

260 Waydom Drive

Transportation Impact Study

Paradigm Transportation Solutions Limited

2025-10 250591

Project Summary

Project Number:

250591

Date and Version:

2025-10 1.0.0

Client:

Tacoma Engineers Inc. 155 Frobisher Drive F220 Waterloo, ON N2V 1G2

Brandon Martin, C.E.T. Sr. Technologist, Senior Associate

Consultant Project Team

Andrew Steinsky, P.Eng., PTOE, PTP, RSP1
Andrew Orr, EIT
Jim Mallett, P.Eng., PTOE

Paradigm Transportation Solutions Limited

5A-150 Pinebush Road Cambridge ON N1R 8J8 p: 519.896.3163 905.381.2229 416.479.9684 www.ptsl.com

260 Waydom Drive Transportation Impact Study

Andrew Steinsky, P.Eng., PTOE, PTP, RSP1

Disclaimer

This document has been prepared for the titled project or named part thereof (the "project") and except for approval and commenting municipalities and agencies in their review and approval of this project, should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorization of Paradigm Transportation Solutions Limited being obtained. Paradigm Transportation Solutions Limited accepts no responsibility or liability for the consequence of this document being used for a purpose other than the project for which it was commissioned. Any person using or relying on the document for such other purpose agrees and will by such use or reliance be taken to confirm their agreement to indemnify Paradigm Transportation Solutions Limited for all loss or damage resulting there from. Paradigm Transportation Solutions Limited accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned and the approval and commenting municipalities and agencies for the project.

To the extent that this report is based on information supplied by other parties, Paradigm Transportation Solutions Limited accepts no liability for any loss or damage suffered by the client, whether through contract or tort, stemming from any conclusions based on data supplied by parties other than Paradigm Transportation Solutions Limited and used by Paradigm Transportation Solutions Limited in preparing this report.

© 1998 Paradigm Transportation Solutions Limited. All rights reserved.

Executive Summary

Content

Tacoma Engineers Inc. retained Paradigm Transportation Solutions Limited (Paradigm) to conduct this Transportation Impact Study (TIS) for a commercial greenhouse/cannabis cultivation facility at 260 Waydom Drive (east of Industrial Road and along the north side of Waydom Drive) in Ayr. The site was historically used as trucking and logistics facility, but has recently been renovated to support a commercial greenhouse/cannabis cultivation facility. The property owner is submitting a Zoning By-law Amendment to permit this use on the site.

The purpose of this study is to estimate the transportation impact(s) of the proposed development on the adjacent transportation network and identify how those impacts, if any, might be mitigated. This TIS includes an analysis of existing traffic conditions, a description of the development, traffic forecasts for two horizon years: five- and ten-years from the date of study, and the identification of any recommendations to manage future traffic conditions.

Development Concept

The subject site is on the north side of Waydom Drive east of Industrial Road and is occupied by a 1,125 m² building. Vehicle access is provided via an all moves driveway connection to Waydom Drive. The site was historically used as trucking and logistics facility, but has since been renovated to support a commercial greenhouse/cannabis cultivation facility. The existing site operates with three employes but has capacity for five employees.

Findings

Based on the analyses contained herein, the findings of this study are as follows:

- ▶ Base Year Traffic Conditions: The study intersection (Industrial Drive and Waydom Drive/Wanless Court) is operating at acceptable levels of service with no critical movements in both the weekday AM peak hour and weekday PM peak hour.
- ▶ Additional Site Trip Generation: With an additional two employees and one customer, the site is forecast to generate an additional four trips in both the weekday AM peak hour and weekday PM peak hour.

- ► Future Background and Total Traffic Conditions: The study intersection and site driveway are forecast to operate at acceptable levels of service and with no critical movements during the weekday AM peak hour and weekday PM peak hour.
- Left-Turn Lane Warrant: An eastbound left-turn lane is not warranted at the intersection of Waydom Drive and the Site Driveway.
- ► Traffic Control Signal Warrant: The need for traffic control signals is considered to be unlikely at the intersection of Industrial Road and Waydom Drive/Wanless Court under tenyear total traffic conditions.
- ▶ All-Way Stop Control Warrant: All-way stop control is not warranted at the intersection of Industrial Road and Waydom Drive/Wanless Court under both future total or future background traffic conditions.

Conclusions and Recommendations

Based on the findings of this study it is concluded that the proposed use of the site is forecast to have a negligible impact on traffic operations. It is recommended that the development be considered for approval with no requirement for off-site transportation improvements.

Contents

1	Introduction	1
1.1 1.2	Overview Purpose and Scope	
2	Existing Conditions	3
2.1 2.2 2.3 2.4 2.5	Road Characteristics	6
3	Development Concept	12
4	Future Conditions	14
4.1 4.2 4.2.1 4.2.2 4.3	Forecast Background Traffic Forecast Site Traffic Trip Generation Trip Distribution and Assignment Future Total Traffic	17 17 18
5	Traffic Operations Assessment	22
5.1 5.2 5.3 5.3.1 5.3.2 5.3.3	Background Traffic Operations	. 25 .25
6	Findings, Conclusions and Recommendations	
6.1	Findings	
6.2	Conclusions and Recommendations	

Appendices

Appendix A	Pre-Study Consultation Material
Appendix B	Turning Movement Count Data
Appendix C	Base Year Traffic Operations Reports
Appendix D	Background Development Traffic Volumes
Appendix E	Five-Year Background Traffic Operations Reports
Appendix F	Ten-Year Background Traffic Operations Reports
Appendix G	Five-Year Total Traffic Operations Reports
Appendix H	Ten-Year Total Traffic Operations Reports
Appendix I	Left-Turn Lane Warrant
Appendix J	Traffic Control Signal Warrant
Appendix K	All-Way Stop Control Warrant

Figures

Figure 1.1:	Location of Subject Site	2
Figure 2.1:	Existing Lane Configuration and Traffic Control	4
Figure 2.2:	Cycling Network	5
Figure 2.3:	Base Year Traffic Volumes	8
Figure 3.1:	Site Plan	13
Figure 4.1:	Five-Year Background Traffic Volumes	15
Figure 4.2:	Ten-Year Background Traffic Volumes	16
Figure 4.3:	Additional Site-Generated Traffic Volumes	19
Figure 4.4:	Five-Year Total Traffic Volumes	20
Figure 4.5:	Ten-Year Total Traffic Volumes	21

Tables

1 able 2.1:	Existing Site Trip Generation Activity	/
Table 2.2:	Base Year Operations	.11
Table 4.1:	Estimated Trip Generation	.17
Table 4.2:	Trip Distribution	.18
Table 5.1:	Five-Year Background Operations	.23
Table 5.2:	Ten-Year Background Operations	
Table 5.3:	Five-Year Total Operations	
Table 5.4:	Ten-Year Total Operations	
Table 5.5:	Left-Turn Lane Warrant Summary – Waydom Drive	

1 Introduction

1.1 Overview

Tacoma Engineers Inc. retained Paradigm Transportation Solutions Limited (Paradigm) to conduct this Transportation Impact Study (TIS) for a commercial greenhouse/cannabis cultivation facility at 260 Waydom Drive (east of Industrial Road and along the north side of Waydom Drive) in Ayr. **Figure 1.1** illustrates the location of the subject site on the north side of Waydom Drive.

The site was historically used as trucking and logistics facility, but has recently been renovated to support a commercial greenhouse/cannabis cultivation facility. The property owner is submitting a Zoning By-law Amendment to permit this use on the site.

1.2 Purpose and Scope

The purpose of this study is to estimate the transportation impact(s) of the proposed development on the adjacent transportation network and identify how those impacts, if any, might be mitigated.

The scope of this study, developed by email with the Region of Waterloo and the Township of North Dumfries in September 2025, includes:

- The assessment of current traffic volumes and operations at Industrial Road and Waydom Drive/Wanless Court, and Industrial Road and the site driveway;
- Estimates of future non-development (background) traffic and site-generated traffic;
- Analyses of future traffic operations (with and without the development) at two horizon years: five and ten years from the date of this study; and
- ► The identification of any necessary mitigation to manage future traffic conditions.

Appendix A contains the pre-study consultation material and responses from the Region and Township.

Location of Subject Site

2 Existing Conditions

2.1 Road Characteristics

The study area roads comprise Industrial Road, Waydom Drive, and Wanless Court. Each road operates under the jurisdiction of the Township of North Dumfries¹ and is generally described as follows:

- ▶ Industrial Road is a north-south two-lane primary township road connecting Cedar Creek Road and Roseville Road. The road has a rural cross-section and operates with a posted speed limit of 60 km/h.
- Waydom Drive is an east-west two-lane local road that terminates to the east of Industrial Road. The road's only connection to the municipal road network is via the intersection with Industrial Road opposite Wanless Court. The road has a rural cross-section and operates with a posted speed limit of 50 km/h.
- Wanless Court is an east-west two-lane local road that terminates to the west of Industrial Road. The road's only connection to the municipal road network is via the intersection with Industrial Road opposite Waydom Drive. The road has a rural cross-section and operates with a posted speed limit of 50 km/h.

Figure 2.1 illustrates the existing traffic control and lane configurations at the study area intersection and site driveway.

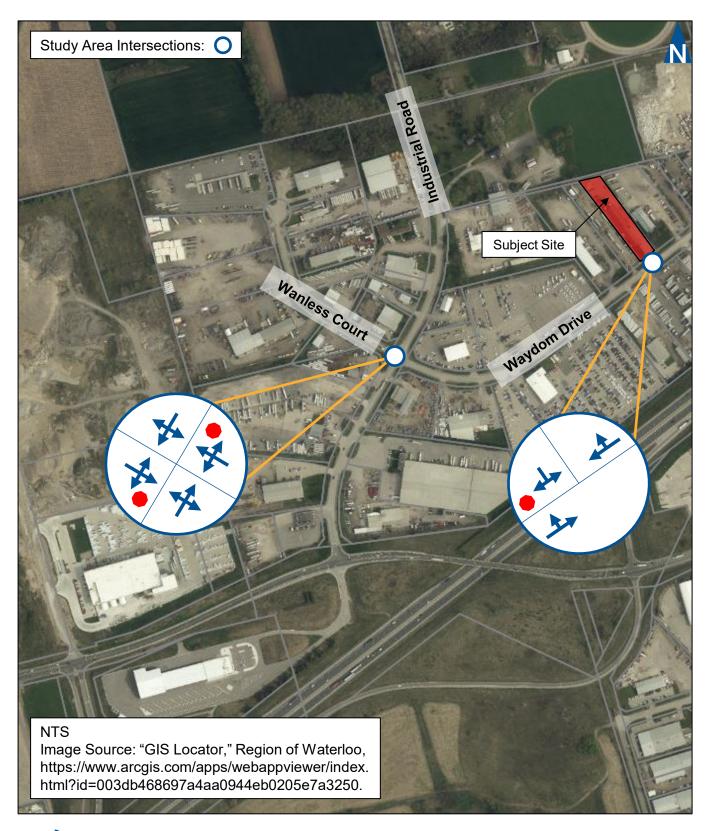
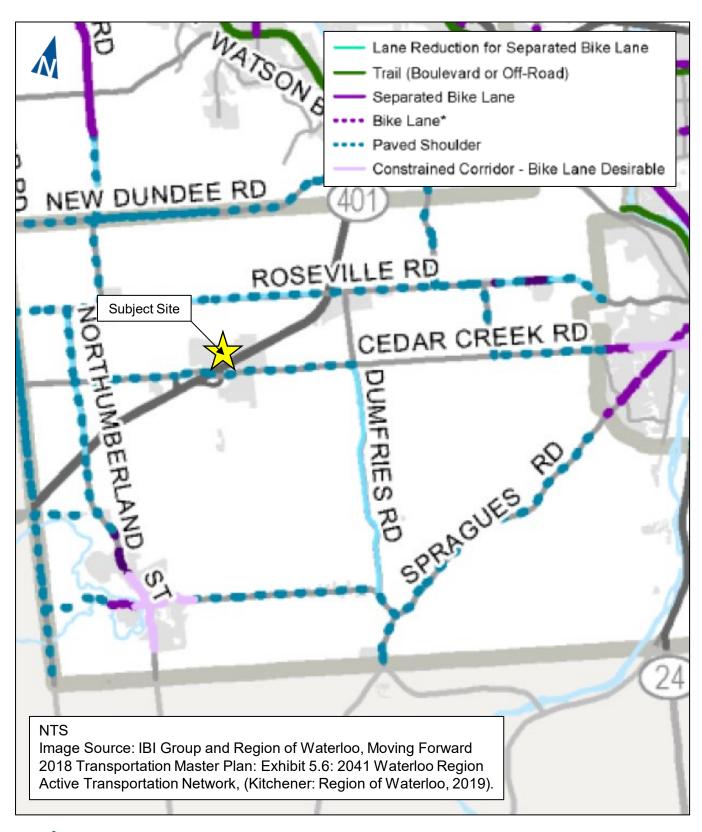

2.2 Active Transportation

Figure 2.2 illustrates the existing and proposed cycling network near the subject site based on mapping in the 2018 Region of Waterloo *Transportation Master Plan*. The study area includes paved shoulders along Cedar Creek Road and Roseville Road. Sidewalks are not provided on either side of Industrial Road, Wanless Court, or Waydom Drive.

² IBI Group and Region of Waterloo, *Moving Forward 2018 Transportation Master Plan: Exhibit 5.6: 2041 Waterloo Region Active Transportation Network*, (Kitchener: Region of Waterloo, 2019).



¹ Township of North Dumfries, *Official Plan Map 3A Transportation*, (Ayr: Township of North Dumfries, 2013).

Existing Lane Configuration and Traffic Control

Cycling Network

2.3 Transit Services

Grand River Transit³ is the public transit operator in the Region of Waterloo and provides specialized on-demand transit services in Cambridge and North Dumfries via their **MobilityPLUS-North Dumfries** service. Service is restricted to eligible customers and is available Monday to Friday from 6 AM to 6 PM, and on Saturdays from 7 AM to 5 PM. Service is not provided on Sundays.

2.4 Traffic Volumes

The traffic volume data referenced in this study is based on turning movement counts conducted by Paradigm at the study intersection and site driveway on Tuesday, April 1, 2025 (7:00 AM to 7:00 PM) and Tuesday September 9, 2025 (6:00 AM to 6:00 PM), respectively. **Appendix B** contains the raw traffic data.

It is noted that access to the existing site driveway was gated off on September 9, 2025; therefore the count did not observe any vehicular traffic entering or exiting the subject site. Nevertheless, the September 2025 TMC does account for existing traffic generated by other businesses along Waydom Drive, and the observed two-way traffic volumes are consistent with the volumes documented at Industrial Road and Wanless/Waydom Drive in April 2025.

In the absence of observed traffic volumes at the site driveway, Paradigm has estimated the existing site trip generation activity based on the number of employees understood to be at the site (three), and potential customer (pick-up) activity during each of the weekday AM peak hour and weekday PM peak hour. **Table 2.1** summarizes the estimated peak hour site traffic, which assume

- One inbound trip per employee during the AM peak hour and one outbound trip per employee during the PM peak hour; and
- One inbound customer trip and one outbound customer trip during both the AM peak hour and PM peak hour.

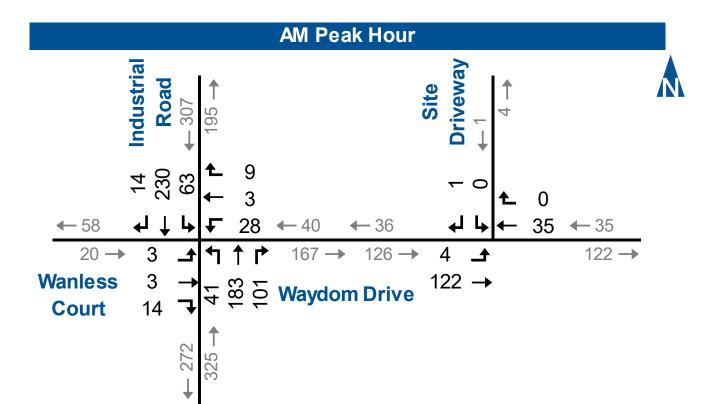

^{3 &}quot;Township Services," Grand River Transit, https://www.grt.ca/en/riderinformation/township-services.aspx.

TABLE 2.1: EXISTING SITE TRIP GENERATION ACTIVITY

Site Conditions	AN	l Peak	Hour	PN	l Peak	Hour
	In	Out	Total	In	Out	Total
Current Operations (Three Employees and One Customer)	4	1	5	1	4	5

Traffic volumes on Waydom Drive between Industrial Road and the site driveway have not been balanced because the observed net change in traffic between Industrial Road and the site driveway is representative of traffic entering and exiting neighbouring industrial properties. Observed volumes show a decrease in eastbound traffic as one travels east along Waydom Drive (towards its terminus) and an increase in volumes as one travels towards Industrial Road. **Figure 2.3** illustrates the base year traffic volumes in the weekday AM peak hour and weekday PM peak hour.

AM Peak Hour | Image: State of the content of the

Base Year Traffic Volumes

2.5 Traffic Operations

Intersection level of service (LOS) is a recognized method of quantifying the average delay experienced by drivers at intersections. It is based on the delay experienced by individual vehicles executing the various movements. The delay is related to the number of vehicles intending to make a particular movement, compared to the estimated capacity for that movement. The capacity is based on a number of criteria related to the opposing traffic flows and intersection geometry.

The highest possible rating is LOS A, under which the average total delay is equal or less than 10.0 seconds per vehicle. When the average delay exceeds 80 seconds for signalized intersections, 50 seconds for unsignalized intersections or when the volume to capacity ratio is greater than 1.00, the movement is classed as LOS F and remedial measures are usually implemented if they are feasible.

The Region of Waterloo *Transportation Impact Study Guidelines* identify critical intersections as those where the average control delay per vehicle is greater than 55 seconds (for signalized intersections) or 35 seconds (for unsignalized intersections). Both delays correspond to LOS E.⁴

Specific movements are considered critical where the

- Estimated 95th percentile queue length for an exclusive movement exceeds the available storage space;
- Exclusive turning lanes are inaccessible because of queue lengths in adjacent through lanes;
- ► Estimated 95th percentile queue lengths for an individual movement will block an existing access; or
- ► The average control delay for individual movements is greater that 55 seconds.

The analysis of existing traffic operations is based on the existing lane configurations, traffic control, and the base year traffic peak hour volumes illustrated in **Figure 2.3**. The existing level of service conditions have been assessed using Synchro 12 and reflect model parameters as specified in the Region of Waterloo *Transportation Impact Study Requirements for Capacity Analysis, Roundabouts, and Signal Warrants.*⁵

Region of Waterloo, Transportation Impact Studies, Requirements for Capacity Analysis, Roundabouts, and Signal Warrants, (Kitchener: Region of Waterloo, n.d.).

Region of Waterloo, *Transportation Impact Study Guidelines*, (Kitchener: Region of Waterloo, 2014), 12.

Table 2.2 summarizes the existing intersection operations highlighting the level of service (LOS), volume to capacity ratio (V/C), and 95th percentile queues for each movement as applicable. All study area intersections are operating at acceptable levels of service in both the weekday AM peak hour and weekday PM peak hour. There are no critical movements noted. **Appendix C** contains the detailed Synchro reports.

TABLE 2.2: BASE YEAR OPERATIONS

þc									Di	rectio	n/Mo	veme	nt/Ap	proac	ch					
Period					Eastb	ound	i		Westl	ounc	i	١	orth	bound	t	S	outh	boun	-	
Analysis P	Intersection	Control Type	MOE	µеТ	Through	Right	Approach	IJЭT	Through	Right	Approach	IJeТ	Through	Right	Approach	IJeТ	Through	Right	Approach	Overall
AM Peak Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	v v v	B 12 0.04 1	^ ^ ^ ^	B 12	v v v	C 18 0.13 3	v v v v	C 18	A 8 0.03 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.05 2	A 0 0.00 0	A 0 0.00 0	A 2	
AM Pea	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 7 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 8 0.00		^ ^ ^	A 8	
k Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	\ \ \ \	B 12 0.11 3	>	B 12	<td>C 20 0.49 20</td> <td>^ ^ ^</td> <td>C 20</td> <td>A 8 0.03 1</td> <td>A 0 0.00 0</td> <td>A 0 0.00 0</td> <td>A 1</td> <td>A 8 0.01 0</td> <td>A 0 0.00 0</td> <td>A 0 0.00 0</td> <td>A 1</td> <td></td>	C 20 0.49 20	^ ^ ^	C 20	A 8 0.03 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.01 0	A 0 0.00 0	A 0 0.00 0	A 1	
PM Peak	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 8 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.01 0		^ ^ ^	A 9	

MOE - Measure of Effectiveness

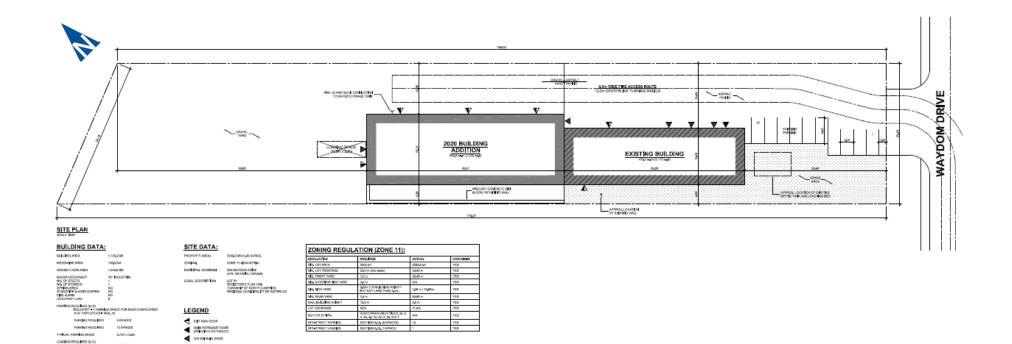
LOS - Level of Service

Delay - Average Delay per Vehicle in Seconds

V/C - Volume to Capacity Ratio

Q - 95th Percentile Queue Length (m)

TWSC - Two-Way Stop Control


</>- Shared Movement

3 Development Concept

The subject site is on the north side of Waydom Drive east of Industrial Road and is occupied by a 1,125 m² building that was historically used as a trucking and logistics facility. Vehicle access is provided via an all moves driveway connection to Waydom Drive. The surrounding land uses on Waydom Drive are exclusively industrial with each site provided vehicular access to Waydom Drive.

The subject site has recently been renovated to support a commercial greenhouse/cannabis cultivation facility. Vehicle access remains via the all moves driveway connection to Waydom Drive. The existing site operates with three employes but has capacity for five employees. **Figure 3.1** illustrates the site plan.

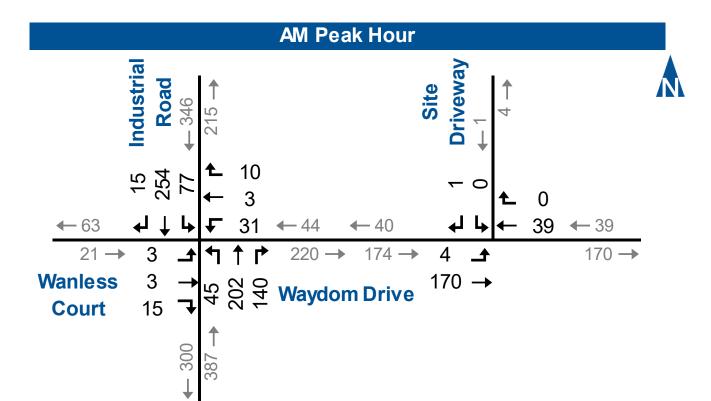
Site Plan

LOADING REQUIRED (\$.10) 1 SPACE/ 2000 SWI LOADING PROVIDING

4 SPROIS

4 Future Conditions

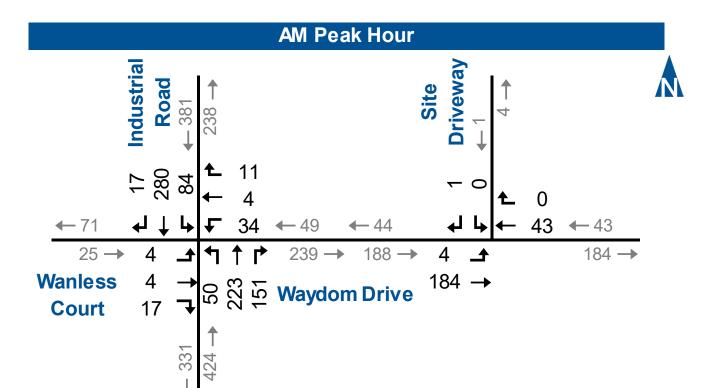
4.1 Forecast Background Traffic

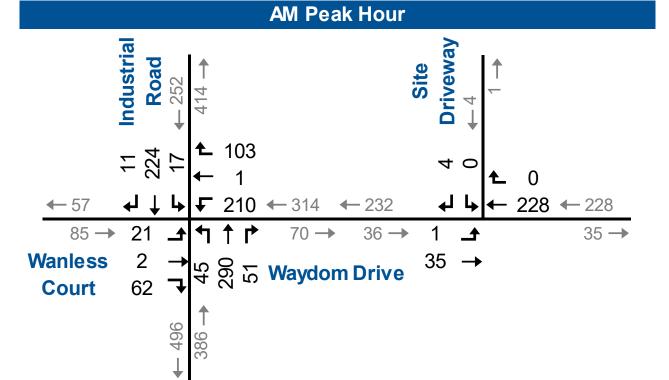

The assessment of future traffic conditions is confined to two horizon years: five and ten years form the date of study (2030 and 2035). The estimated future background traffic volumes in the study area reflect an annual growth rate of 2.0% applied to all the base year volumes. This growth rate is based on direction from Region and Township staff during pre-study consultation and is intended to account for general increases in traffic outside of potential development activity near the study area.

The future background traffic volumes also include estimates of trip generation for a proposed expansion of 535-655 Waydom Drive. The Traffic Impact Study⁶ for this site indicates an expansion of 12,292 m² to the existing industrial facility, which is estimated to generate 35 trips during both the AM peak hour and PM peak hour. **Appendix D** contains the future background development traffic volumes for this planned expansion.

Figure 4.1 and **Figure 4.2** illustrate the respective five-year and tenyear background traffic volumes, in both the weekday AM peak hour and weekday PM peak hour.

Paradigm Transportation Solutions Limited, 535-655 Waydom Drive, Ayr, Proposed Industrial Expansion, (Cambridge: PTSL, 2025).





Five-Year Background Traffic Volumes

Ten-Year Background Traffic Volumes

4.2 Forecast Site Traffic

4.2.1 Trip Generation

The trip generation for the site is based on a first principles approach given the small sample size (two or fewer sample sites) for this land use type in the Institute of Transportation Engineers (ITE) *Trip Generation Manual.*⁷ A first principles approach has also been used because of the small scale of the proposed facility which is inconsistent with proxy site data collected by Paradigm at a site in Grimsby, for another transportation impact study.

Based on information provided by the client, it is understood the number of employees could expand from three to five under future conditions. Consistent with the estimates of existing site trip activity, Paradigm has assumed

- One inbound trip per employee during the AM peak hour and one outbound trip per employee during the PM peak hour; and
- One inbound customer trip and one outbound customer trip during both the AM peak hour and PM peak hour.

Table 4.1 summarizes the estimated trip generation assuming five employees and two customers within each of the weekday AM peak hour and weekday PM peak hour. If the total employment increases to five individuals and the site receives an additional customer in both the morning and afternoon, an additional four trips are forecast during both the AM peak hour and PM peak hour.

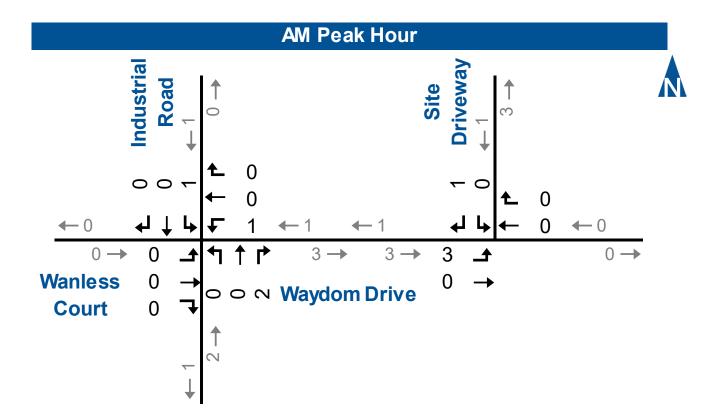
TABLE 4.1: ESTIMATED TRIP GENERATION

Site Conditions	AM	Peak l	Hour	PM	Peak l	Hour
	ln	Out	Total	ln	Out	Total
Current Operations (Three Employees and One Customer)	4	1	5	1	4	5
Future Operations (Five Employees and Two Customers)	7	2	9	2	7	9
Net Change	+3	+1	+4	+1	+3	+4

Institute of Transportation Engineers, *Trip Generation Manual*, 12th ed., (Washington DC: ITE, 2025).

4.2.2 Trip Distribution and Assignment

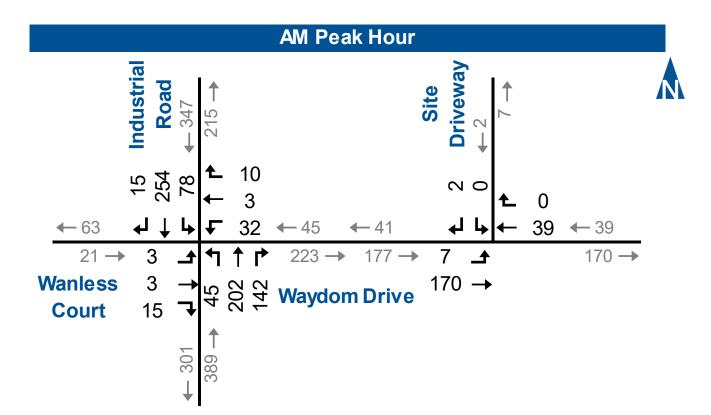
The trip distribution used for this study is based on existing travel patterns as noted in the traffic impact study for 535-655 Waydom Drive. Use of the trip distribution from this TIS is considered appropriate for this study because it is reflective of the surrounding industrial land uses and employees of these businesses likely travelling to/from their place of residence. **Table 4.2** summarizes the trip distribution. **Figure 4.3** illustrates the additional site-generated trips during the AM and PM peak hours.

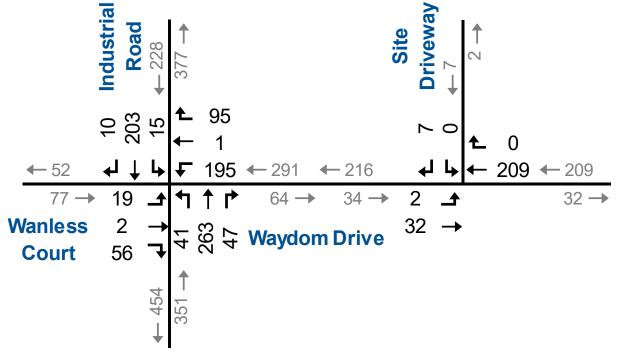

TABLE 4.2: TRIP DISTRIBUTION

Origin/Destination	Distribution
North via Industrial Road	20%
South via Industrial Road	80%
Total	100%

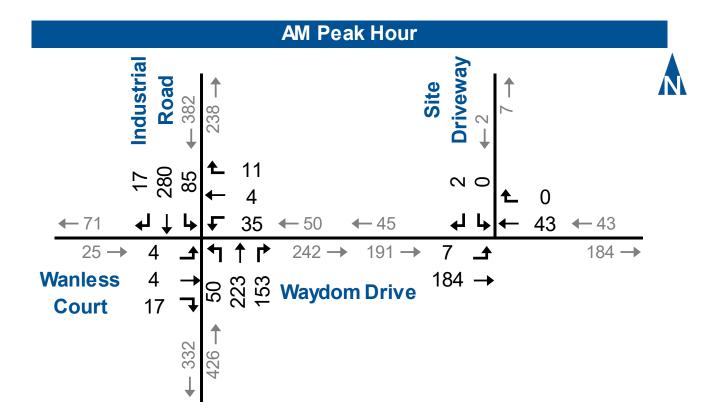
4.3 Future Total Traffic

The future total traffic volumes represent the summation of the additional site generated traffic volumes and the background traffic volumes.

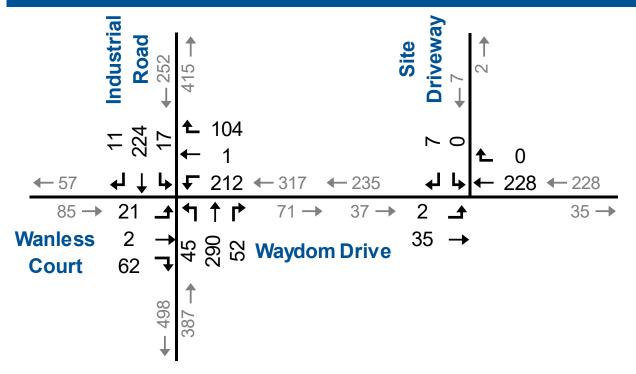

Figure 4.4 and **Figure 4.5** illustrate the forecast five-year and ten-year traffic volumes, respectively during the weekday AM and weekday PM peak hours.


AMI Peak Hour | Image: Second of the content of th

Additional Site-Generated Traffic Volumes



AM Peak Hour



Five-Year Total Traffic Volumes

AM Peak Hour

Ten-Year Total Traffic Volumes

5 Traffic Operations Assessment

The analysis of future background and future total traffic conditions under each horizon year uses the same methodology as existing traffic conditions to enable a direct comparison between scenarios and to identify the net impact of the development on the transportation network.

5.1 Background Traffic Operations

Table 5.1 and **Table 5.2** summarize the estimated traffic operations under five- and ten-year background traffic conditions, respectively. Under both horizon years the study intersection and site driveway are forecast to operate at acceptable levels of service, and within capacity, during both the weekday AM peak hour and weekday PM peak hour.

Appendix E and **Appendix F** contain the detailed Synchro reports for five-year and ten-year background conditions, respectively.

5.2 Total Traffic Operations

Table 5.3 and **Table 5.4** summarize the five- and ten-year total traffic level of service conditions, respectively. The analyses indicate the study intersection and site driveway are forecast to operate at acceptable levels of service in both the weekday AM peak hour and the weekday PM peak hour. No critical movements are forecast.

With the addition of the site generated traffic volumes, the approach delays at the study area intersections are forecast to increase by no more than one second during either of the weekday AM peak hour or the weekday PM peak hour as compared to background traffic conditions of the same horizon year. **Appendix G** and **Appendix H** contain the detailed Synchro reports for five-year and ten-year total conditions, respectively.

TABLE 5.1: FIVE-YEAR BACKGROUND OPERATIONS

þ									Di	rectio	n/Mo	veme	nt/Ap	proac	h					
Period					Eastb	ound	i		Westl	ounc	i	١	lorthi	ooun	t	S	outh	boun	-	
Analysis P	Intersection	Control Type	MOE	IJЭT	Through	Right	Approach	IJЭT	Through	Right	Approach	IJeТ	Through	Right	Approach	IJeТ	Through	Right	Approach	Overall
AM Peak Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	v v v	B 13 0.04 1	^ ^ ^ ^	B 13	v v v	C 22 0.17 4	v v v v	C 22	A 8 0.04 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.07 2	A 0 0.00 0	A 0 0.00 0	A 2	
AM Pea	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 7 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.00 0		^ ^ ^	A 9	
k Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	\ \ \ \	B 12 0.13 4	>	B 12	<td>D 30 0.69 38</td> <td>^ ^ ^</td> <td>D 30</td> <td>A 8 0.04 1</td> <td>A 0 0.00 0</td> <td>A 0 0.00 0</td> <td>A 1</td> <td>A 8 0.01 0</td> <td>A 0 0.00 0</td> <td>A 0 0.00 0</td> <td>A 1</td> <td></td>	D 30 0.69 38	^ ^ ^	D 30	A 8 0.04 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.01 0	A 0 0.00 0	A 0 0.00 0	A 1	
PM Peak	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 8 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.01 0		^ ^ ^	A 9	

MOE - Measure of Effectiveness

LOS - Level of Service

Delay - Average Delay per Vehicle in Seconds

V/C - Volume to Capacity Ratio

Q - 95th Percentile Queue Length (m)

TWSC - Two-Way Stop Control

</>- Shared Movement

TABLE 5.2: TEN-YEAR BACKGROUND OPERATIONS

þ									Di	rectio	n/Mo	veme	nt/Ap	proac	ch					
eric					Eastb	ound			Westl	ounc	i	1	orth	ooun	t	S	outh	boun	d	
Analysis Period	Intersection	Control Type	MOE	μеη	Through	Right	Approach	µ еТ	Through	Right	Approach	µ өТ	Through	Right	Approach	IJƏТ	Through	Right	Approach	Overall
=	Industrial Road & Wanless	TWSC	LOS Delay	< <	B 14	> >	B 14	< <	D 26	>	D 26	A 8	A 0	A 0	A 1	A 8	A 0	A 0	A 2	
k Hou	Court/Waydom Drive	10030	V/C Q	<	0.06	>		<	0.22 6	>		0.04 1	0.00	0.00		0.07 2	0.00	0.00		
AM Peak Hour	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 7 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.00 0		^ ^ ^	A 9	
Peak Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	v v v	B 13 0.16 4	^ ^ ^ ^	B 13	v v v v	E 47 0.83 56	v v v v	E 47	A 8 0.04 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.01 0	A 0 0.00 0	A 0 0.00 0	1	
PM Pea		TWSC	LOS Delay V/C Q	A 8 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 10 0.01 0		^ ^ ^	A 10	

MOE - Measure of Effectiveness

LOS - Level of Service

Delay - Average Delay per Vehicle in Seconds

V/C - Volume to Capacity Ratio

Q - 95th Percentile Queue Length (m)

TWSC - Two-Way Stop Control

</>- Shared Movement

TABLE 5.3: FIVE-YEAR TOTAL OPERATIONS

po									Di	rectio	n/Mo	veme	nt/Ap	proac	ch					
Period					Eastb	ounc	ŀ	,	Westl	ounc	i	1	orth	bound	t	S	outh	bound	b	
Analysis P	Intersection	Control Type	MOE	Left	Through	Right	Approach	µеТ	Through	Right	Approach	µеТ	Through	Right	Approach	IJeТ	Through	Right	Approach	Overall
ık Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	V V V	B 13 0.04 1	^ ^ ^ ^ ^	B 13	v v v	C 22 0.18 4	v v v v	C 22	A 8 0.04 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.07 2	A 0 0.00 0	A 0 0.00 0	A 2	
AM Peak	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 7 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.00 0		^	A 9	
PM Peak Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	<	B 12 0.13 4	>	B 12		D 31 0.69 38	^ ^ ^	D 31	A 8 0.04 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.01 0	A 0 0.00 0	A 0 0.00 0	A 1	
PM Pea	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 8 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.01 0		^	A 9	

MOE - Measure of Effectiveness

LOS - Level of Service

Delay - Average Delay per Vehicle in Seconds

V/C - Volume to Capacity Ratio

Q - 95th Percentile Queue Length (m)

TWSC - Two-Way Stop Control

</>- Shared Movement

TABLE 5.4: TEN-YEAR TOTAL OPERATIONS

Ş									Di	rectio	n/Mo	veme	nt/Ap	proac	ch					
eric					Eastb	ound			Westl	ounc	i	1	orth	ooun	t	S	outh	boun	d	
Analysis Period	Intersection	Control Type	MOE	μеη	Through	Right	Approach	µ еТ	Through	Right	Approach	µ өТ	Through	Right	Approach	IJƏТ	Through	Right	Approach	Overall
<u> </u>	Industrial Road & Wanless	TWSC	LOS Delay	< <	B 14	> >	B 14	< <	D 26	>	D 26	A 8	A 0	A 0	A 1	A 8	A 0	A 0	A 2	
k Hor	Court/Waydom Drive	10030	V/C Q	< <	0.06	> >		< <	0.23 6	>		0.04	0.00	0.00		0.07 2	0.00	0.00		
AM Peak Hour	Waydom Drive & Site Driveway	TWSC	LOS Delay V/C Q	A 7 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 9 0.00 0		^ ^ ^	A 9	
Peak Hour	Industrial Road & Wanless Court/Waydom Drive	TWSC	LOS Delay V/C Q	v v v	B 13 0.16 4	^ ^ ^	B 13	v v v	E 48 0.84 58	v v v v	E 48	A 8 0.04 1	A 0 0.00 0	A 0 0.00 0	A 1	A 8 0.01 0	A 0 0.00 0	A 0 0.00 0	1	
PM Pea		TWSC	LOS Delay V/C Q	A 8 0.00 0	A 0 0.00 0		A 0		A 0 0.00 0	A 0 0.00 0	A 0					A 10 0.01 0		\ \ \ \ \	A 10	

MOE - Measure of Effectiveness

LOS - Level of Service

Delay - Average Delay per Vehicle in Seconds

V/C - Volume to Capacity Ratio

Q - 95th Percentile Queue Length (m)

TWSC - Two-Way Stop Control

</>- Shared Movement

5.3 Remedial Measures

The operational analyses presented in **Section 5.1** and **Section 5.2** indicate the study intersection and site driveway are forecast to operate at acceptable levels of service and within capacity with or without the development of 260 Waydom Drive. The westbound approach on Waydom Drive at Industrial Drive is forecast to operate at LOS E, but with delays less than 55 seconds, and v/c ratios no greater than 0.84. Overall development of the site is forecast to have a negligible impact on traffic operations.

For completeness, Paradigm has reviewed the need for an eastbound left-turn lane at the site driveway, and the need for intersection control improvements to improve traffic operations on Waydom Drive at Industrial Road.

5.3.1 Left-Turn Lane Warrant

Exclusive left-turn lanes provide a dedicated lane for left-turning vehicles to complete their movement. The Transportation Association of Canada (TAC) *Geometric Design Guide for Canadian Roads* states, "when the number of left-turning vehicles at intersections is such that it creates a hazard and reduces capacity, consideration should be given to the provision of a separate left-turn lane."

The Ministry of Transportation's (MTO) *Design Supplement*⁹ to the Transportation Association of Canada (TAC) *Geometric Design Guide for Canadian Roads*¹⁰ contains the warrants for left-turn lanes. For two-lane roads, the warrant is based on a combination of the advancing and opposing design hour volumes, the design speed of the road, and the percentage of left-turning vehicles in the advancing volume. Left-turn lanes are not typically warranted where the left-turning volume is less than 5% of the advancing volume.

Table 5.5 summarizes the left-turn lane warrant for the intersection of Waydom Drive at the Site Driveway, which is based on a design speed of 60 km/h, 10 km/h over the posted speed limit on Waydom Drive. **Appendix I** contains the left-turn lane warrant nomographs which indicate that an eastbound left-turn lane is not warranted under 2035 future total traffic conditions.

Transportation Association of Canada, "Left-Turn Lanes," chap 9.17 in Geometric Design Guide for Canadian Roads, (Ottawa: TAC, 2017), 122-152.

Transportation Association of Canada, "Left-Turn Lanes," chap. 9.17 in Geometric Design Guide for Canadian Roads, (Ottawa: TAC, 2017), 122.

Ministry of Transportation, Ontario, Design Supplement for the TAC Geometric Design Guide for Canadian Roads, Appendix 9A for Section 9.17 (Left-Turn Lanes), (Toronto: MTO, 2017).

TABLE 5.5: LEFT-TURN LANE WARRANT SUMMARY – WAYDOM DRIVE

Roadway	Waydo	Waydom Drive	
Intersection	Site Di	Site Driveway	
Approach Direction	East	Eastbound	
Design Speed	60 I	60 km/h	
Horizon	Total	Total 2035	
Peak Hour	AM	PM	
Advancing Volume	191	37	
Opposing Volume	43	228	
Left Turning Traffic	7	2	
% of Left Turning Traffic	4%	5%	
Figure Used*	9A-7	9A-7	
Warranted	No	No	
Storage Length Required	-	-	

^{*}Ontario Ministry of Transportation, MTO Design Supplement for TAC Geometric Design Guide for Canadian Roads, (Toronto: Queens Printer for Ontario, 2020).

5.3.2 Intersection Control Review – Traffic Control Signal Warrant

Under existing and future traffic conditions, no critical movements are forecast at Industrial Road and Waydom Drive. However, the westbound approach at the intersection is forecast to operate at LOS E under the 10-year future background and future total traffic horizons. This indicates the movement is approaching the critical threshold.

Paradigm has assessed the need for traffic control signals at the intersection based on Justification 7 (Projected Volumes) as published in *Ontario Traffic Manual (OTM) Book 12.* ¹¹ **Appendix J** contains the warrant analysis and indicates traffic control signals are unlikely to be warranted at the intersection under ten-year total traffic conditions.

5.3.3 Intersection Control Review – All-Way Stop Control Warrant

As an alternative to providing traffic control signals, Paradigm has assessed the need for all-way stop control using the warrant for all-way stop control defined in OTM Book 5¹².

Appendix K contains the warrant analysis and indicates that all-way stop control is not warranted at the intersection of Industrial Road and Waydom Drive/Wanless Court based on future total ten-year horizon traffic volumes.

Ontario Ministry of Transportation, *Ontario Traffic Manual Book 5: Regulatory Signs*, (Toronto: Queen's Printer for Ontario, 2021).

Ontario Ministry of Transportation, *Ontario Traffic Manual Book 12: Traffic Signals*, (Toronto: Queen's Printer for Ontario, 2024).

6 Findings, Conclusions and Recommendations

6.1 Findings

Based on the analyses contained herein, the findings of this study are as follows:

- ▶ Base Year Traffic Conditions: The study intersection (Industrial Drive and Waydom Drive/Wanless Court) is operating at acceptable levels of service with no critical movements in both the weekday AM peak hour and weekday PM peak hour.
- ▶ Additional Site Trip Generation: With an additional two employees and one customer, the site is forecast to generate an additional four trips in both the weekday AM peak hour and weekday PM peak hour.
- ► Future Background and Total Traffic Conditions: The study intersection and site driveway are forecast to operate at acceptable levels of service and with no critical movements during the weekday AM peak hour and weekday PM peak hour.
- Left-Turn Lane Warrant: An eastbound left-turn lane is not warranted at the intersection of Waydom Drive and the Site Driveway.
- ► Traffic Control Signal Warrant: The need for traffic control signals is considered to be unlikely at the intersection of Industrial Road and Waydom Drive/Wanless Court under tenyear total traffic conditions.
- All-Way Stop Control Warrant: All-way stop control is not warranted at the intersection of Industrial Road and Waydom Drive/Wanless Court under both future total or future background traffic conditions.

6.2 Conclusions and Recommendations

Based on the findings of this study it is concluded that the proposed use of the site is forecast to have a negligible impact on traffic operations. It is recommended that the development be considered for approval with no requirement for off-site transportation improvements.

Appendix A

Pre-Study Consultation Material

From: Cheryl Marcy < CMarcy@regionofwaterloo.ca>

Sent: September 18, 2025 3:34 PM **To:** Andrew Orr; Joshua Beech Falshaw

Cc: Andrew Steinsky; 'sbucholtz@northdumfries.ca'

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

Hello Andrew,

My apologies on the delay getting back to you.

The Region has no additional comments to the terms of reference.

Thanks,

Cheryl Marcy, C.E.T.

Manager, Corridor Development | Region of Waterloo 150 Frederick Street, 8th Floor, Kitchener, ON N2G 4J3

P: 226-753-1093 | TTY: 519-575-4608 E: <u>cmarcy@regionofwaterloo.ca</u> Web: <u>www.regionofwaterloo.ca</u>

Confidentiality Notice: This email correspondence (including any attachments) may contain information which is confidential and/or exempt from disclosure under applicable law, and is intended only for the use of the designated recipient(s) listed above. Any unauthorized use or disclosure is strictly prohibited. If you are not the intended recipient, or have otherwise received this message by mistake, please notify the sender by replying via email, and destroy all copies of this original correspondence (including any attachments). Thank you.

From: Andrew Orr <aorr@ptsl.com> Sent: September 4, 2025 3:04 PM

To: Cheryl Marcy < CMarcy@regionofwaterloo.ca>; Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca>

Cc: Andrew Steinsky <asteinsky@ptsl.com>; 'sbucholtz@northdumfries.ca' <sbucholtz@northdumfries.ca>

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

CAUTION! EXTERNAL SENDER

Were you expecting this email? TAKE A CLOSER LOOK. Is the sender legitimate? DO NOT click links or open attachments unless you are 100% sure that the email is safe.

Hi Cheryl and Josh,

Does the Region have any comments to add to the terms of reference below? The township already provided their response (see the attached email).

Best Regards,

Andrew Orr, M.A.Sc., EIT

Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8

p: 519.896.3163 x210 m: 289-808-8997 e: aorr@ptsl.com w: www.ptsl.com

From: Katrina Fluit < KFluit@regionofwaterloo.ca>

Sent: August 28, 2025 12:29 PM **To:** Andrew Orr <aorr@ptsl.com>

Cc: Cheryl Marcy < CMarcy@regionofwaterloo.ca>; Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca>;

Andrew Steinsky <asteinsky@ptsl.com>; 'sbucholtz@northdumfries.ca' <sbucholtz@northdumfries.ca>

Subject: FW: 250591 (260 Waydom Drive, Ayr) TIS

Hello Andrew,

Thanks for sending this along to us. I have moved to a new position in the Region and am no longer processing development applications, but Joshua and Cheryl (cc'd) will be able to redirect your email as needed.

Josh and Cheryl – please see the email from Andrew below.

Thank you,

Katrina Fluit (She/Her)

Senior Development Planner

From: Andrew Orr <aorr@ptsl.com>
Sent: August 28, 2025 12:12 PM

To: Katrina Fluit < KFluit@regionofwaterloo.ca; sbucholtz@northdumfries.ca

Cc: Andrew Steinsky <<u>asteinsky@ptsl.com</u>>
Subject: 250591 (260 Waydom Drive, Ayr) TIS

CAUTION! EXTERNAL SENDER

Were you expecting this email? TAKE A CLOSER LOOK. Is the sender legitimate? DO NOT click links or open attachments unless you are 100% sure that the email is safe.

Hello Sandy and Katrina,

Paradigm Transportation Solutions Limited (Paradigm) has been retained to conduct this Transportation Impact Study (TIS) for a development located at 260 Waydom Drive (east of industrial Road and along the north side of Waydom Drive) in Ayr, Ontario. The subject site is currently occupied by 1,125 square meter building hosting a commercial greenhouse/cannabis cultivation facility. Vehicle access is proposed via an existing all-moves driveway connection to Waydom Drive. (site plan attached).

We'd like to prepare our report based on the following scope, subject to your comments. If the Region is interested in this study, a PSC form will be issued:

PROPOSED TERMS OF REFERENCE

Study Area Intersections:

- Industrial Road at Waydom Drive (unsignalized); and
- Existing driveway connection to Waydom Drive.

Analysis Periods:

- Weekday AM peak hour
- Weekday PM peak hour

Existing Data:

- TMC data collected by Paradigm in April 2025 for Industrial Road at Waydom Drive
- TMC data to be collected by Paradigm in September/October 2025 at the existing site driveway

Horizon Year:

Five-years from the date the study is commissioned (2029)

Analysis:

Synchro 12, HCM 7 analysis

Background Traffic:

- Background traffic annual growth rate: 2% Please confirm
- Proposed industrial expansion at 535-655 Waydom Drive
- Additional developments to include in background. Please confirm

Future Road Improvements:

Please confirm

Trip Generation:

- First Principles approach/existing facility operations;
- Proxy site data; and
- ITE Trip Generation Data 12th Edition.

Site Traffic Distribution:

Existing Traffic Patterns

Best Regards,

Andrew Orr, M.A.Sc., EIT

Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8 p: 519.896.3163 x210

m: 289-808-8997 e: aorr@ptsl.com w: www.ptsl.com This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

From: Andrew Orr

Sent: September 16, 2025 12:12 PM

To: Joshua Beech Falshaw

Cc: Chris Clary-Lemon; Andrew Steinsky **Subject:** RE: 250591 (260 Waydom Drive, Ayr) TIS

Hi Josh,

I'm following up to see if the Region will be providing any comments on the terms of reference for the 260 Waydom Drive TIS?

Best Regards,

Andrew Orr, M.A.Sc., EIT

Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8

p: 519.896.3163 x210 m: 289-808-8997 e: aorr@ptsl.com w: www.ptsl.com

From: Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca>

Sent: September 9, 2025 1:11 PM **To:** Andrew Orr <aorr@ptsl.com>

Cc: Chris Clary-Lemon <cclarylemon@regionofwaterloo.ca>; Andrew Steinsky <asteinsky@ptsl.com>

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

Hi Andrew,

Thanks for sending that over.

We are still dividing up points of contact by geography, however things have been changing rather rapidly with staff coming and going on our end. Currently the review areas are as follows

Waterloo/Woolwich/Kitchener East of King St – Tanikia Kinear (tkinear@regionofwaterloo.ca)
Cambridge/Wilmot/Wellesley/Kitchener West of King St – Myself
North Dumfries – Cheryl Marcy (cmarcy@regionofwaterloo.ca)

Hope that helps

Cheers,

Josh Falshaw (he/him)

Transportation Planner | Regional Growth, Development, and Sustainability Services Planning, Development, and Legislative Services | Region of Waterloo 150 Frederick Street, 8th Floor, Kitchener, ON

Phone: 519-897-1309

Email: <u>ibeechfalshaw@regionofwaterloo.ca</u>

From: Andrew Orr <aorr@ptsl.com>
Sent: September 9, 2025 12:55 PM

To: Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca >

Cc: Chris Clary-Lemon < cclarylemon@regionofwaterloo.ca; Andrew Steinsky < asteinsky@ptsl.com

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

CAUTION! EXTERNAL SENDER

Were you expecting this email? TAKE A CLOSER LOOK. Is the sender legitimate? DO NOT click links or open attachments unless you are 100% sure that the email is safe.

Hi Josh,

Attached to this email is the site plan for 260 Waydom Drive.

Moving forward with other projects in Waterloo Region, are you the contact for all traffic studies in Waterloo Region? Or is there other regional contacts for traffic studies depending on the city/township the project is located in?

Previously, its been my understanding that the Region has different contacts depending on township/city. If that's still the case, would you be able to provide me with the updated regional contacts list? The current list I have is likely out of date.

Best Regards,

Andrew Orr, M.A.Sc., EIT Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8 p: 519.896.3163 x210 m: 289-808-8997 e: aorr@ptsl.com

w: www.ptsl.com

From: Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca>

Sent: September 9, 2025 12:41 PM **To:** Andrew Orr aorr@ptsl.com

Cc: Chris Clary-Lemon < cclarylemon@regionofwaterloo.ca>

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

Good afternoon Andrew,

Would you be able to send me a copy of the site plan for 260 Waydom Drive. I have realized that Katrina did not send that my way and she is on vacation at the moment.

Cheers,

Josh Falshaw (he/him)

Transportation Planner | Regional Growth, Development, and Sustainability Services Planning, Development, and Legislative Services | Region of Waterloo 150 Frederick Street, 8th Floor, Kitchener, ON

Phone: 519-897-1309

Email: <u>ibeechfalshaw@regionofwaterloo.ca</u>

From: Andrew Orr <aorr@ptsl.com>
Sent: September 4, 2025 3:04 PM

To: Cheryl Marcy < CMarcy@regionofwaterloo.ca >; Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca >

Cc: Andrew Steinsky <asteinsky@ptsl.com>; 'sbucholtz@northdumfries.ca' <sbucholtz@northdumfries.ca>

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

CAUTION! EXTERNAL SENDER

Were you expecting this email? TAKE A CLOSER LOOK. Is the sender legitimate? DO NOT click links or open attachments unless you are 100% sure that the email is safe.

Hi Cheryl and Josh,

Does the Region have any comments to add to the terms of reference below? The township already provided their response (see the attached email).

Best Regards,

Andrew Orr, M.A.Sc., EIT

Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8

p: 519.896.3163 x210 m: 289-808-8997 e: aorr@ptsl.com

w: www.ptsl.com

From: Katrina Fluit < KFluit@regionofwaterloo.ca>

Sent: August 28, 2025 12:29 PM
To: Andrew Orr <aorr@ptsl.com>

Cc: Cheryl Marcy < CMarcy@regionofwaterloo.ca; Joshua Beech Falshaw < jbeechfalshaw@regionofwaterloo.ca;

Andrew Steinsky <asteinsky@ptsl.com>; 'sbucholtz@northdumfries.ca' <sbucholtz@northdumfries.ca>

Subject: FW: 250591 (260 Waydom Drive, Ayr) TIS

Hello Andrew,

Thanks for sending this along to us. I have moved to a new position in the Region and am no longer processing development applications, but Joshua and Cheryl (cc'd) will be able to redirect your email as needed.

Josh and Cheryl – please see the email from Andrew below.

Thank you,

Katrina Fluit (She/Her)

Senior Development Planner

From: Andrew Orr <aorr@ptsl.com>
Sent: August 28, 2025 12:12 PM

To: Katrina Fluit < KFluit@regionofwaterloo.ca; sbucholtz@northdumfries.ca

Cc: Andrew Steinsky <asteinsky@ptsl.com>
Subject: 250591 (260 Waydom Drive, Ayr) TIS

CAUTION! EXTERNAL SENDER

Were you expecting this email? TAKE A CLOSER LOOK. Is the sender legitimate? DO NOT click links or open attachments unless you are 100% sure that the email is safe.

Hello Sandy and Katrina,

Paradigm Transportation Solutions Limited (Paradigm) has been retained to conduct this Transportation Impact Study (TIS) for a development located at 260 Waydom Drive (east of industrial Road and along the north side of Waydom Drive) in Ayr, Ontario. The subject site is currently occupied by 1,125 square meter building hosting a commercial greenhouse/cannabis cultivation facility. Vehicle access is proposed via an existing all-moves driveway connection to Waydom Drive. (site plan attached).

We'd like to prepare our report based on the following scope, subject to your comments. If the Region is interested in this study, a PSC form will be issued:

PROPOSED TERMS OF REFERENCE

Study Area Intersections:

- Industrial Road at Waydom Drive (unsignalized); and
- Existing driveway connection to Waydom Drive.

Analysis Periods:

Weekday AM peak hour

Weekday PM peak hour

Existing Data:

- TMC data collected by Paradigm in April 2025 for Industrial Road at Waydom Drive
- TMC data to be collected by Paradigm in September/October 2025 at the existing site driveway

Horizon Year:

Five-years from the date the study is commissioned (2029)

Analysis:

Synchro 12, HCM 7 analysis

Background Traffic:

- Background traffic annual growth rate: 2% Please confirm
- Proposed industrial expansion at 535-655 Waydom Drive
- Additional developments to include in background. Please confirm

Future Road Improvements:

Please confirm

Trip Generation:

- First Principles approach/existing facility operations;
- Proxy site data; and
- ITE Trip Generation Data 12th Edition.

Site Traffic Distribution:

Existing Traffic Patterns

Best Regards,

Andrew Orr, M.A.Sc., EIT

Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8

p: 519.896.3163 x210 m: 289-808-8997 e: aorr@ptsl.com w: www.ptsl.com

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

Great Place

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally,

the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

From: Sandy Bucholtz <sbucholtz@northdumfries.ca>

Sent: August 28, 2025 2:43 PM **To:** Andrew Orr; Katrina Fluit

Cc: Andrew Steinsky

Subject: RE: 250591 (260 Waydom Drive, Ayr) TIS

Andrew

The only thing we would ask is that the horizon year be 10 yrs from the date of study.

Sandy Bucholtz Engineering Technologist

The Corporation of the Township of North Dumfries 106 Earl Thompson Road, 3rd Floor P.O. Box 1060 Ayr, Ontario, N0B 1E0

T – 519-632-8116 C – 519-580-0768

sbucholtz@northdumfries.ca

From: Andrew Orr <aorr@ptsl.com>

Sent: Thursday, August 28, 2025 12:12 PM

To: Katrina Fluit <kfluit@regionofwaterloo.ca>; Sandy Bucholtz <sbucholtz@northdumfries.ca>

Cc: Andrew Steinsky <asteinsky@ptsl.com>
Subject: 250591 (260 Waydom Drive, Ayr) TIS

You don't often get email from aorr@ptsl.com. Learn why this is important

Hello Sandy and Katrina,

Paradigm Transportation Solutions Limited (Paradigm) has been retained to conduct this Transportation Impact Study (TIS) for a development located at 260 Waydom Drive (east of industrial Road and along the north side of Waydom Drive) in Ayr, Ontario. The subject site is currently occupied by 1,125 square meter building hosting a commercial greenhouse/cannabis cultivation facility. Vehicle access is proposed via an existing all-moves driveway connection to Waydom Drive. (site plan attached).

We'd like to prepare our report based on the following scope, subject to your comments. If the Region is interested in this study, a PSC form will be issued:

PROPOSED TERMS OF REFERENCE

Study Area Intersections:

- Industrial Road at Waydom Drive (unsignalized); and
- Existing driveway connection to Waydom Drive.

Analysis Periods:

- Weekday AM peak hour
- Weekday PM peak hour

Existing Data:

- TMC data collected by Paradigm in April 2025 for Industrial Road at Waydom Drive
- TMC data to be collected by Paradigm in September/October 2025 at the existing site driveway

Horizon Year:

Five-years from the date the study is commissioned (2029)

Analysis:

Synchro 12, HCM 7 analysis

Background Traffic:

- Background traffic annual growth rate: 2% Please confirm
- Proposed industrial expansion at 535-655 Waydom Drive
- Additional developments to include in background. Please confirm

Future Road Improvements:

Please confirm

Trip Generation:

- First Principles approach/existing facility operations;
- Proxy site data; and
- ITE Trip Generation Data 12th Edition.

Site Traffic Distribution:

Existing Traffic Patterns

Best Regards,

Andrew Orr, M.A.Sc., EIT

Transportation Consultant, Associate (He/Him)

5A-150 Pinebush Road, Cambridge ON, N1R 8J8

p: 519.896.3163 x210 m: 289-808-8997 e: aorr@ptsl.com w: www.ptsl.com

This e-mail and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this e-mail in error please notify the sender immediately. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of Paradigm Transportation Solutions Limited. Finally, the recipient should check this e-mail and any attachments for the presence of viruses. Paradigm Transportation Solutions Limited accepts no liability for any damage caused by any virus transmitted by this e-mail.

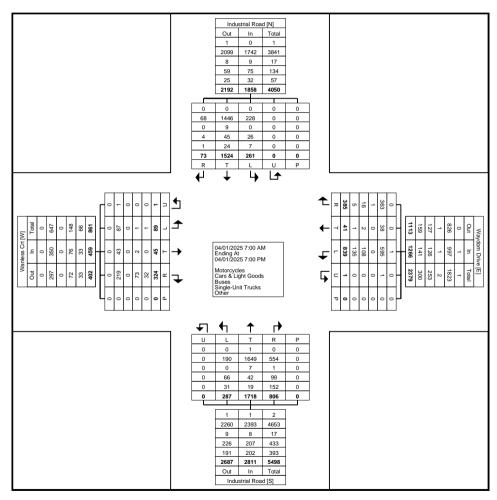
Appendix B

Turning Movement Count Data

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 asteinsky@ptsl.com

Count Name: Wydom Drive & Industrial Road Site Code: 250109 Start Date: 04/01/2025 Page No: 1

Turning Movement Data


				ess Crt						om Drive	J					rial Road						ial Road			
Start Time		_		bound		Арр.				tbound		Ann		_		nbound		App.		_		nbound		Ann	
	Left	Thru	Right	U-Turn	Peds	Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:00 AM	0	3	2	0	0	. 5	8	0	2	0	0	10	8	35	24	0	0	67	7	41	. 4	0	0	52	134
7:15 AM	0	1	2	0	0	3	10	0	0	0	0	10	9	42	18	0	0	69	4	48	3	0	0	55	137
7:30 AM	2	0	3	0	0	5	7	0	3	0	0	10	6	42	19	0	0	67	17	66	1	0	0	84	166
7:45 AM	0	3	3	0	0	6	5	1	3	0	0	9	19	42	36	0	0	97	17	. 76	9	0	0	102	214
Hourly Total	2	7	10	0	0	19	30	1	. 8	0	0	39	42	161	97	0	0	300	45	231	17	0	0	293	651
8:00 AM	0	0	4	0	0	4	7	0	1	0	0	8	9	54	22	0	0	85	15	37	2	0	0	54	151
8:15 AM	1	0	. 4	0	0	5	8	2	2	0	0	12	7	45	21	0	0	73	13	51	2	0	0	66	156
8:30 AM	0	2	5	0	0	7	12	1	1	0	0	14	8	43	27	0	0	78	8	43	1	0	0	52	151
8:45 AM	0	1	2	0	0	3	10	0	2	0	0	12	6	40	23	0	0	69	5	39	1	0	0	45	129
Hourly Total	1	3	15	0	0	19	37	3	6	0	0	46	30	182	93	0	0	305	41	170	6	0	0	217	587
9:00 AM	1	0	6	0	0	7	12	0	. 8	0	0	20	5	30	20	0	0	55	3	35	1	0	0	39	121
9:15 AM	2	1	4	0	0	7	16	0	0	0	0	16	2	14	16	0	0	32	5	26	1	0	0	32	87
9:30 AM	1	2	. 0	0	. 0	. 3	14	0	2	. 0	0	16	7	21	11	0	0	39	3	24	2	0	0	29	87
9:45 AM	0	4	6	0	0	10	16	2	1	0	0	19	6	20	19	0	0	45	14	24	2	0	0	40	114
Hourly Total	4	7	16	0	0	27	58	2	11	0	0	71	20	85	66	0	0	171	25	109	6	0	0	140	409
10:00 AM	1	. 1	. 5	0	0	. 7	27	3	1	0	0	31	7	19	15	0	0	41	4	20	0	0	0	24	103
10:15 AM	1	2	7	0	0	10	13	1	5	0	0	19	3	23	23	0	0	49	4	20	1	0	0	25	103
10:30 AM	0	1	2	0	0	3	20	0	3	0	0	23	4	20	18	0	0	42	4	17	0	0	0	21	89
10:45 AM	2	0	1	0	0	3	17	3	2	. 0	0	22	5	22	16	0	0	43	3	23	1	0	0	27	95
Hourly Total	4	4	15	0	0	23	77	7	11	0	0	95	19	84	72	0	0	175	15	80	2	0	0	97	390
11:00 AM	0	1	6	0	0	7	22	3	5	0	0	30	2	22	21	0	0	45	1	21	1	0	0	23	105
11:15 AM	0	1	1	0	0	2	11	1	4	0	0	16	3	17	15	0	0	35	4	18	0	0	0	22	75
11:30 AM	2	2	4	0	0	8	12	1	3	0	0	16	4	21	20	0	0	45	6	19	0	0	0	25	94
11:45 AM	2	2	6	0	0	10	16	1	3	0	0	20	3	24	22	0	0	49	3	17	0	0	0	20	99
Hourly Total	4	6	17	0	0	27	61	6	15	0	0	82	12	84	78	0	0	174	14	75	1	0	0	90	373
12:00 PM	3	2	11	0	0	16	20	0	9	1	0	30	2	21	19	0	0	42	5	18	3	0	0	26	114
12:15 PM	2	1	10	0	0	13	16	1	9	0	0	26	11	23	18	0	0	52	2	16	2	0	0	20	111
12:30 PM	2	1	6	1	0	10	14	1	3	0	0	18	3	18	19	0	0	40	5	22	2	0	0	29	97
12:45 PM	0	0	9	0	0	9	16	2	3	0	0	21	8	23	21	0	0	52	3	22	3	0	0	28	110
Hourly Total	7	4	36	1	0	48	66	4	24	1	0	95	24	85	77	0	0	186	15	78	10	0	0	103	432
1:00 PM	2	1	8	0	0	11	27	1	10	0	0	38	2	18	13	0	0	33	4	22	2	0	0	28	110
1:15 PM	0	1	1	0	0	2	12	2	4	0	0	18	8	30	17	0	0	55	12	29	0	0	0	41	116
1:30 PM	1	2	4	0	0	7	15	2	5	0	0	22	7	26	38	0	0	71	28	24	2	0	0	54	154
1:45 PM	1	0	3	0	0	4	19	1	2	0	0	22	9	30	23	0	0	62	17	24	1	0	0	42	130
Hourly Total	4	4	16	0	0	24	73	6	21	0	0	100	26	104	91	0	0	221	61	99	5	0	0	165	510

2:00 PM	2	0	7	0	0	9	49	2	88	0	0	139	9	22	22	0	0	53	3	17	0	0	0	20	221
2:15 PM	2	0	8	0	0	10	37	0	20	0	0	57	7	32	22	0	0	61	2	20	1	0	0	23	151
2:30 PM	4	0	13	0	0	17	14	3	7	0	0	24	15	41	15	0	0	71	1	27	1	0	0	29	141
2:45 PM	1	3	10	0	0	14	19	1	6	0	0	26	11	31	23	0	0	65	5	27	6	0	0	38	143
Hourly Total	9	3	38	0	0	50	119	6	121	0	0	246	42	126	82	0	0	250	11	91	8	0	0	110	656
3:00 PM	6	0	16	0	0	22	26	0	18	0	0	44	2	36	14	0	0	52	1	34		0	0	37	155
3:15 PM	3	2	12	0	0	17	16	1	5	0	0	22	6	43	13	0	0	62	2	37	1	0	0	40	141
3:30 PM	1	1	10	0	0	12	23	3	13	0	0	39	5	53	17	0	0	75	5	36	3	0	0	44	170
3:45 PM	1	0	4	0	0	5	20	0	10	0	0	30	6	38	11	0	. 0	55	1	63		0	0	65	155
	11	3	42	0	0	56	85 85	4	46	0	0	135	19	170	55	0	0	244	9	170	7	0	0	186	621
Hourly Total		-				-			-						-										
4:00 PM	7	2	15	. 0	0	24	33	1	22	0	0	56	15	51	. 14	. 0	0	80	6	56	2	0	0	64	224
4:15 PM	2	0	10	0	0	12	34	0	11	0	0	45	7	53	10	0	0	70	3	45	2	0	0	50	177
4:30 PM	6	0	15	0	0	21	58	0	36	0	0	94	9	64	8	0	0	81	3	38	5	0	0	46	242
4:45 PM	2	0	11	. 0	0	13	21	0	9	0	0	30	6	70	9	0	. 0	85	2	45	0	0	0	47	175
Hourly Total	17	2	51	0	0	70	146	1	78	0	0	225	37	238	41	0	0	316	14	184	9	0	0	207	818
5:00 PM	10	0	23	0	0	33	16	0	10	0	0	26	1	96	9	0	0	106	2	34	0	0	0	36	201
5:15 PM	4	0	15	. 0	0	19	16	0	. 8	0	0	24	2	62	11	0	0	75	4	49	0	0	0	53	171
5:30 PM	2	1	10	0	0	13	14	1	7	0	0	22	2	58	6	0	0	66	3	48	1	0	0	52	153
5:45 PM	2	0	2	0	0	4	11	0	8	0	0	19	2	49	5	0	0	56	0	33	1	0	0	34	113
Hourly Total	18	1	50	0	0	69	57	1	33	0	0	91	7	265	31	0	0	303	9	164	2	0	0	175	638
6:00 PM	5	0	5	0	0	10	9	0	4	0	0	13	4	35	5	0	0	44	0	24	0	0	0	24	91
6:15 PM	1	1	2	0	0	4	9	0	3	0	0	12	2	40	6	0	0	48	0	17	0	0	0	17	81
6:30 PM	1	0	8	0	0	9	6	0	1	0	0	7	2	27	7	0	0	36	1	17	0	0	0	18	70
6:45 PM	1	0	3	0	0	4	6	0	3	0	0	9	1	32	5	0	0	38	1	15	0	0	0	16	67
Hourly Total	8	1	18	0	0	27	30	0	11	0	0	41	9	134	23	0	0	166	2	73	0	0	0	75	309
Grand Total	89	45	324	1	0	459	839	41	385	1	0	1266	287	1718	806	0	0	2811	261	1524	73	0	0	1858	6394
Approach %	19.4	9.8	70.6	0.2	-	-	66.3	3.2	30.4	0.1	-	-	10.2	61.1	28.7	0.0	-	-	14.0	82.0	3.9	0.0	-	-	-
Total %	1.4	0.7	5.1	0.0	-	7.2	13.1	0.6	6.0	0.0	-	19.8	4.5	26.9	12.6	0.0	-	44.0	4.1	23.8	1.1	0.0	-	29.1	-
Motorcycles	0	0	0	0	-	0	1	0	0	0	-	1	0	1	0	0	-	1	0	0	0	0	-	0	2
% Motorcycles	0.0	0.0	0.0	0.0	-	0.0	0.1	0.0	0.0	0.0	-	0.1	0.0	0.1	0.0		-	0.0	0.0	0.0	0.0		-	0.0	0.0
Cars & Light Goods	87	43	219	1	_	350	595	38	363	1	_	997	190	1649	554	0	_	2393	228	1446	68	0	_	1742	5482
% Cars & Light	97.8	95.6	67.6	100.0		76.3	70.9	92.7	94.3	100.0		78.8	66.2	96.0	68.7			85.1	87.4	94.9	93.2			93.8	85.7
Goods															-		-	•							
Buses	0	0	0	0		0	0	0	1	0	-	1	0	7	1	0		8	0	9	0	0	-	9	18
% Buses	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.3	0.0	-	0.1	0.0	0.4	0.1		-	0.3	0.0	0.6	0.0	-	-	0.5	0.3
Single-Unit Trucks % Single-Unit	1	2	73	. 0	-	76	108	2	16	0	-	126	66	42	99	0	-	207	26	45	. 4	0	-	75	484
Trucks	1.1	4.4	22.5	0.0	-	16.6	12.9	4.9	4.2	0.0	-	10.0	23.0	2.4	12.3	-	-	7.4	10.0	3.0	5.5	-	-	4.0	7.6
Articulated Trucks	1	0	32	0	-	33	135	1	5	0	-	141	31	19	152	0	-	202	7	24	1	0	-	32	408
% Articulated Trucks	1.1	0.0	9.9	0.0	-	7.2	16.1	2.4	1.3	0.0	-	11.1	10.8	1.1	18.9	-	-	7.2	2.7	1.6	1.4	-	-	1.7	6.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	_	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	_	0	-	-		-	_	0	-	-				0	-	-	_	_	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

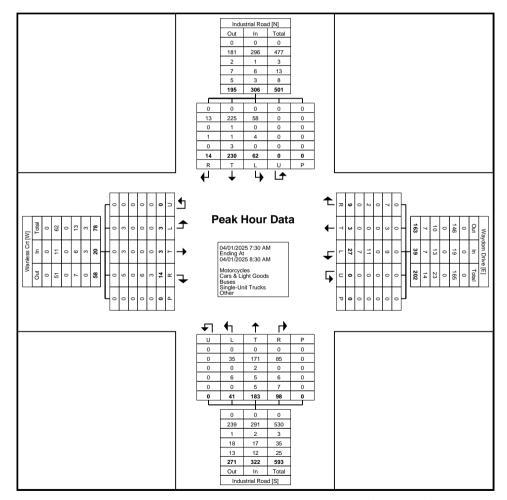
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 asteinsky@ptsl.com

Count Name: Wydom Drive & Industrial Road Site Code: 250109 Start Date: 04/01/2025 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 asteinsky@ptsl.com

Count Name: Wydom Drive & Industrial Road Site Code: 250109 Start Date: 04/01/2025 Page No: 4


Turning Movement Peak Hour Data (7:30 AM)

	ı						ı	ı anı	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10111	oun	ioai	Data	•	, (ivi)			ı						1
			Wanl	ess Crt					Waydo	m Drive					Industr	ial Road					Industr	ial Road			
			East	bound					West	tbound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
7:30 AM	2	0	3	0	0	5	7	0	3	0	0	10	6	42	19	0	0	67	17	66	1	0	0	84	166
7:45 AM	0	3	3	0	0	6	5	1	3	0	0	9	19	42	36	0	0	97	17	76	9	0	0	102	214
8:00 AM	0	0	4	0	0	4	7	0	1	0	0	8	9	54	22	0	0	85	15	37	2	0	0	54	151
8:15 AM	1	0	4	0	0	5	8	2	2	0	0	12	7	45	21	0	0	73	13	51	2	0	0	66	156
Total	3	3	14	0	0	20	27	3	9	0	0	39	41	183	98	0	0	322	62	230	14	0	0	306	687
Approach %	15.0	15.0	70.0	0.0	-	-	69.2	7.7	23.1	0.0	-	-	12.7	56.8	30.4	0.0	-	-	20.3	75.2	4.6	0.0	-	-	-
Total %	0.4	0.4	2.0	0.0	-	2.9	3.9	0.4	1.3	0.0	-	5.7	6.0	26.6	14.3	0.0	-	46.9	9.0	33.5	2.0	0.0	-	44.5	-
PHF	0.375	0.250	0.875	0.000	-	0.833	0.844	0.375	0.750	0.000	-	0.813	0.539	0.847	0.681	0.000	-	0.830	0.912	0.757	0.389	0.000	-	0.750	0.803
Motorcycles	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Motorcycles	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Cars & Light Goods	3	3	5	0	-	11	9	3	7	0	-	19	35	171	85	0	-	291	58	225	13	0	-	296	617
% Cars & Light Goods	100.0	100.0	35.7	-	-	55.0	33.3	100.0	77.8	-	-	48.7	85.4	93.4	86.7	-	-	90.4	93.5	97.8	92.9	-	-	96.7	89.8
Buses	0	0	0	0	-	0	0	0	0	0	-	0	0	2	0	0	-	2	0	1	0	0	-	1	3
% Buses	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	1.1	0.0	-	-	0.6	0.0	0.4	0.0	-	-	0.3	0.4
Single-Unit Trucks	0	0	6	0	-	6	11	0	2	0	-	13	6	5	6	0	-	17	4	1	1	0	-	6	42
% Single-Unit Trucks	0.0	0.0	42.9	-	-	30.0	40.7	0.0	22.2	-	-	33.3	14.6	2.7	6.1	-	-	5.3	6.5	0.4	7.1	-	-	2.0	6.1
Articulated Trucks	0	0	3	0	-	3	7	0	0	0	-	7	0	5	7	0	-	12	0	3	0	0	-	3	25
% Articulated Trucks	0.0	0.0	21.4	-	-	15.0	25.9	0.0	0.0	-	-	17.9	0.0	2.7	7.1	-	-	3.7	0.0	1.3	0.0	-	-	1.0	3.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 asteinsky@ptsl.com

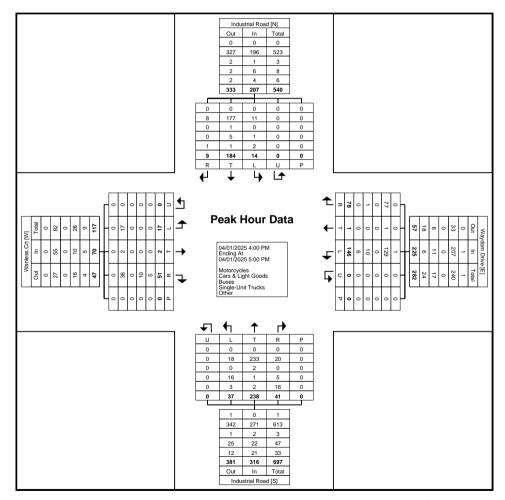
Count Name: Wydom Drive & Industrial Road Site Code: 250109 Start Date: 04/01/2025 Page No: 5

Turning Movement Peak Hour Data Plot (7:30 AM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 asteinsky@ptsl.com

Count Name: Wydom Drive & Industrial Road Site Code: 250109 Start Date: 04/01/2025 Page No: 6

Turning Movement Peak Hour Data (4:00 PM)


								ı un	mig i	1000	icit i	can	loui	Data	(4.00	1 1V1 <i>)</i>									
			Wanl	ess Crt					Waydo	m Drive					Industr	ial Road					Industri	ial Road			
			East	bound					West	bound					North	bound					South	bound			
Start Time	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
4:00 PM	7	2	15	0	0	24	33	1	22	0	0	56	15	51	14	0	0	80	6	56	2	0	0	64	224
4:15 PM	2	0	10	0	0	12	34	0	11	0	0	45	7	53	10	0	0	70	3	45	2	0	0	50	177
4:30 PM	6	0	15	0	0	21	58	0	36	0	0	94	9	64	8	0	0	81	3	38	5	0	0	46	242
4:45 PM	2	0	11	0	0	13	21	0	9	0	0	30	6	70	9	. 0	0	85	2	45	0	. 0	0	47	175
Total	17	2	51	0	0	70	146	1	78	0	0	225	37	238	41	0	0	316	14	184	9	0	0	207	818
Approach %	24.3	2.9	72.9	0.0	-	-	64.9	0.4	34.7	0.0	-	-	11.7	75.3	13.0	0.0	-	-	6.8	88.9	4.3	0.0	-	_	-
Total %	2.1	0.2	6.2	0.0	-	8.6	17.8	0.1	9.5	0.0	-	27.5	4.5	29.1	5.0	0.0	-	38.6	1.7	22.5	1.1	0.0	-	25.3	-
PHF	0.607	0.250	0.850	0.000	-	0.729	0.629	0.250	0.542	0.000	-	0.598	0.617	0.850	0.732	0.000	-	0.929	0.583	0.821	0.450	0.000	-	0.809	0.845
Motorcycles	0	0	0	0	-	0	1	0	0	0	-	1	0	0	0	0	-	0	0	0	0	0	-	0	1
% Motorcycles	0.0	0.0	0.0	_	-	0.0	0.7	0.0	0.0	-	-	0.4	0.0	0.0	0.0		-	0.0	0.0	0.0	0.0		-	0.0	0.1
Cars & Light Goods	17	2	36	0	-	55	129	1	77	0	-	207	18	233	20	0	-	271	11	177	8	0	-	196	729
% Cars & Light Goods	100.0	100.0	70.6	-	-	78.6	88.4	100.0	98.7	-	-	92.0	48.6	97.9	48.8	-	-	85.8	78.6	96.2	88.9	-	-	94.7	89.1
Buses	0	0	0	0	-	0	0	0	0	0	-	0	0	2	0	0	-	2	0	1	0	0	-	1	3
% Buses	0.0	0.0	0.0	_	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.8	0.0		-	0.6	0.0	0.5	0.0		-	0.5	0.4
Single-Unit Trucks	0	0	10	0	-	10	10	0	1	0	-	11	16	1	5	0	-	22	1	5	0	0	-	6	49
% Single-Unit Trucks	0.0	0.0	19.6	-	-	14.3	6.8	0.0	1.3	-	-	4.9	43.2	0.4	12.2	-	-	7.0	7.1	2.7	0.0	-	-	2.9	6.0
Articulated Trucks	0	0	5	0	-	5	6	0	0	0	-	6	3	2	16	0	-	21	2	1	1	0	-	4	36
% Articulated Trucks	0.0	0.0	9.8	-	-	7.1	4.1	0.0	0.0	-	-	2.7	8.1	0.8	39.0	-	-	6.6	14.3	0.5	11.1	-	-	1.9	4.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
	•		•	•	•			•	•	•		•		•	•			•		•	•				

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 asteinsky@ptsl.com

Count Name: Wydom Drive & Industrial Road Site Code: 250109 Start Date: 04/01/2025

Page No: 7

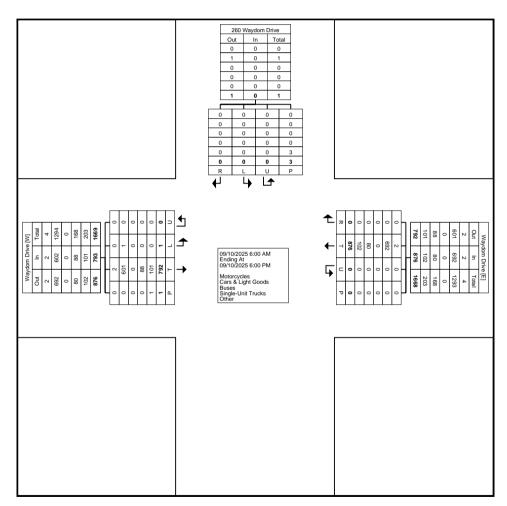
Turning Movement Peak Hour Data Plot (4:00 PM)

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: 260 Waydom Drive Site Code: 250591 Start Date: 09/10/2025

Page No: 1

Turning Movement Data


	1		Waydom Drive			1 411	mig ivio	Waydom Drive				260 V	Vaydom Drive Dri	iveway		
Start Time			Eastbound					Westbound					Southbound			
Start Time	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Int. Total
6:00 AM	0	16	. 0	0	16	20	0	0	0	20	0	0	. 0	. 0	. 0	36
6:15 AM	0	22	0	0	22	8	0	0	0	8	0	0	0	0	0	30
6:30 AM	0	20	0	0	20	5	0	0	0	5	0	0	0	0	0	25
6:45 AM	0	14	. 0	0	. 14	6	0	0	0	6	0	0	. 0	0	. 0	20
Hourly Total	0	72	0	0	72	39	0	0	0	39	0	0	0	0	0	111
7:00 AM	0	20	0	0	20	11	0	0	0	11	0	0	0	0	0	31
7:15 AM	0	14	0	0	14	3	0	0	0	3	0	0	0	0	0	17
7:30 AM	0	14	0	0	14	4	0	0	0	4	0	0	0	0	0	18
7:45 AM	0	48	0	1	48	14	0	0	0	14	0	0	0	2	0	62
Hourly Total	0	96	0	1	96	32	0	0	0	32	0	0	0	2	0	128
8:00 AM	0	31	0	0	31	9	0	0	0	9	0	0	0	0	0	40
8:15 AM	0	29	0	0	29	8	0	0	0	8	0	0	0	0	0	37
8:30 AM	0	18	0	0	18	8	0	0	0	8	0	0	0	0	0	26
8:45 AM	0	16	0	0	16	14	0	0	0	14	0	0	0	0	0	30
Hourly Total	0	94	0	0	94	39	0	0	0	39	0	0	0	0	0	133
9:00 AM	0	18	0	0	18	18	0	0	0	18	0	0	0	0	0	36
9:15 AM	0	12	0	0	12	10	0	0	0	10	0	0	0	0	0	22
9:30 AM	0	11	0	0	11	8	0	0	0	8	0	0	0	0	0	19
9:45 AM	0	15	0	0	15	7	0	0	0	7	0	0	0	0	0	22
Hourly Total	0	56	0	0	56	43	0	0	0	43	0	0	0	0	0	99
10:00 AM	0	13	0	0	13	11	0	0	0	11	0	0	0	0	0	24
10:15 AM	0	10	0	0	10	13	0	0	0	13	0	0	0	0	0	23
10:30 AM	0	14	0	0	14	12	0	0	0	12	0	0	0	0	0	26
10:45 AM	1	8	0	0	9	6	0	0	0	6	0	0	0	0	0	15
Hourly Total	1	45	0	0	46	42	0	0	0	42	0	0	0	0	0	88
11:00 AM	0	13	0	0	13	13	0	0	0	13	0	0	0	0	0	26
11:15 AM	0	17	0	0	17	10	0	0	0	10	0	0	0	0	0	27
11:30 AM	0	8	0	0	8	16	0	0	0	16	0	0	0	0	0	24
11:45 AM	0	14	0	0	14	19	0	0	0	19	0	0	0	0	0	33
Hourly Total	0	52	0	0	52	58	0	0	0	58	0	0	0	0	0	110
12:00 PM	0	13	0	0	13	25	0	0	0	25	0	0	0	0	0	38
12:15 PM	0	11	0	0	11	10	0	0	0	10	0	0	0	1	0	21
12:30 PM	0	25	0	0	25	12	0	0	0	12	0	0	0	0	0	37
12:45 PM	0	16	0	0	16	12	0	0	0	12	0	0	0	0	0	28
Hourly Total	0	65	0	0	65	59	0	0	0	59	0	0	0	1	0	124
1:00 PM	0	19	0	0	19	11	0	0	0	11	0	0	0	0	0	30

1:15 PM	0	23	0	0	23	11	0	0	0	11	0	0	0	0	0	34
1:30 PM	0	50	0	0	50	18	0	0	0	18	0	0	0	0	0	68
1:45 PM	0	50	0	0	50	12	0	0	0	12	0	0	0	0	0	62
Hourly Total	0	142	0	0	142	52	0	0	0	52	0	0	0	0	0	194
2:00 PM	0	18	0	0	18	137	0	0	0	137	0	0	0	0	0	155
2:15 PM	0	6	0	0	6	45	0	0	0	45	0	0	0	0	0	51
2:30 PM	0	11	0	0	11	19	0	0	0	19	0	0	0	0	0	30
2:45 PM	0	28	0	0	28	18	0	0	0	18	0	0	0	0	0	46
Hourly Total	0	63	0	0	63	219	0	0	0	219	0	0	0	0	0	282
3:00 PM	0	8	0	0	8	11	0	0	0	11	0	0	0	0	0	19
3:15 PM	0	13	0	0	13	20	0	0	0	20	0	0	0	0	0	33
3:30 PM	0	14	0	0	14	27	0	0	0	27	0	0	0	0	0	41
3:45 PM	0	13	0	0	13	26	0	0	0	26	0	0	0	0	0	39
Hourly Total	0	48	0	0	48	84	0	0	0	84	0	0	0	0	0	132
4:00 PM	0	2	0	0	2	35	0	0	0	35	0	0	0	0	0	37
4:15 PM	0	15	0	0	15	18	0	0	0	18	0	0	0	0	0	33
4:30 PM	0	4	0	0	4	76	0	0	0	76	0	0	0	0	0	80
4:45 PM	0	8	0	0	8	29	0	0	0	29	0	0	0	0	0	37
Hourly Total	0	29	0	0	29	158	0	0	0	158	0	0	0	0	0	187
5:00 PM	0	8	0	0	8	19	0	0	0	19	0	0	0	0	0	27
5:15 PM	0	8	0	0	8	11	0	0	0	11	0	0	0	0	0	19
5:30 PM	0	7	0	0	7	15	0	0	0	15	0	0	0	0	0	22
5:45 PM	0	7	0	0	7	6	0	0	0	6	0	0	0	0	0	13
Hourly Total	0	30	0	0	30	51	0	0	0	51	0	0	0	0	0	81
Grand Total	1	792	0	1	793	876	0	0	0	876	0	0	0	3	0	1669
Approach %	0.1	99.9	0.0	-	-	100.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	-
Total %	0.1	47.5	0.0	-	47.5	52.5	0.0	0.0	-	52.5	0.0	0.0	0.0	-	0.0	-
Motorcycles	0	2	0	-	2	2	0	0	-	2	0	0	0	-	0	4
% Motorcycles	0.0	0.3	-	-	0.3	0.2	-	-	-	0.2	-	-	-	-	-	0.2
Cars & Light Goods	1	601	0	-	602	692	0	0	-	692	0	0	0	-	0	1294
% Cars & Light Goods	100.0	75.9	-	-	75.9	79.0	-	-	-	79.0	-	-	-	-	-	77.5
Buses	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Buses	0.0	0.0	-	-	0.0	0.0	-	-	-	0.0	-	-	-	-	-	0.0
Single-Unit Trucks	0	88	0	-	88	80	0	0	-	80	0	0	0	-	0	168
% Single-Unit Trucks	0.0	11.1	-	-	11.1	9.1	-	-	-	9.1	-	-	-	-	-	10.1
Articulated Trucks	0	101	0	-	101	102	0	0	-	102	0	0	0	-	0	203
% Articulated Trucks	0.0	12.8	-	-	12.7	11.6	-	-	-	11.6	-	-	-	-	-	12.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	-	-	-	0.0	-	-	-	-	-	0.0
Bicycles on Crosswalk	-	-	-	0		-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	_	-	0.0	_	-	-	-	-	-	-	-	-	0.0	-	-
Pedestrians	-	-	-	1	-	-	-	-	0	-	-	-	-	3	-	-
% Pedestrians	-	-	-	100.0	_	-	-	-	-	-	-	-	-	100.0	-	-

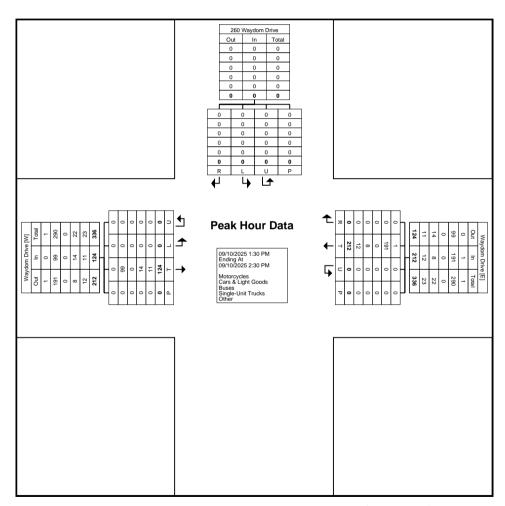
Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: 260 Waydom Drive Site Code: 250591 Start Date: 09/10/2025 Page No: 3

Turning Movement Data Plot

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: 260 Waydom Drive Site Code: 250591 Start Date: 09/10/2025 Page No: 4


Turning Movement Peak Hour Data (1:30 PM)

ı					runni	i i i i i i i i i i i i i i i i i i i	ICITE I C	ak noui i	Jaia (i .	.30 i ivi <i>)</i> ,						ı
			Waydom Drive					Waydom Drive				260 W	/aydom Drive Dri	veway		1
Start Time			Eastbound					Westbound					Southbound			1
Start Time	Left	Thru	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Int. Total
1:30 PM	0	50	0	0	50	18	0	0	0	18	0	0	0	0	0	68
1:45 PM	0	50	0	0	50	12	0	0	0	12	0	0	0	0	0	62
2:00 PM	0	18	0	0	18	137	0	0	0	137	0	0	0	0	0	155
2:15 PM	0	6	0	0	6	45	0	0	0	45	0	0	0	0	0	51
Total	0	124	0	0	124	212	0	0	0	212	0	0	0	0	0	336
Approach %	0.0	100.0	0.0	-	-	100.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	-
Total %	0.0	36.9	0.0	-	36.9	63.1	0.0	0.0	-	63.1	0.0	0.0	0.0	-	0.0	-
PHF	0.000	0.620	0.000	-	0.620	0.387	0.000	0.000	-	0.387	0.000	0.000	0.000	-	0.000	0.542
Motorcycles	0	0	0	-	0	1	0	0	-	1	0	0	0	-	0	1
% Motorcycles	-	0.0	-	-	0.0	0.5	-	-	-	0.5	-	_	-	-	-	0.3
Cars & Light Goods	0	99	0	-	99	191	0	0	-	191	0	0	0	-	0	290
% Cars & Light Goods	-	79.8	-	-	79.8	90.1	-	-	-	90.1	-	-	-	-	-	86.3
Buses	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Buses	-	0.0	-	-	0.0	0.0	-	-	-	0.0	-	-	-	-	-	0.0
Single-Unit Trucks	0	14	0	-	14	8	0	0	-	8	0	0	0	-	0	22
% Single-Unit Trucks	-	11.3	-	-	11.3	3.8	-	-	-	3.8	-	_	-	-	-	6.5
Articulated Trucks	0	11	0	-	11	12	0	0	-	12	0	0	0	-	0	23
% Articulated Trucks	-	8.9	-	-	8.9	5.7	-	-	-	5.7	-	-	-	-	-	6.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
% Bicycles on Road	-	0.0	-	-	0.0	0.0	-	-	-	0.0	-	-	-	-	-	0.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
% Bicycles on Crosswalk	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	_	-	0	-	-
% Pedestrians	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-

Cambridge, Ontario, Canada N1R 8J8 519-896-3163 cbowness@ptsl.com

Count Name: 260 Waydom Drive Site Code: 250591 Start Date: 09/10/2025 Page No: 5

Turning Movement Peak Hour Data Plot (1:30 PM)

Appendix C

Base Year Traffic Operations Reports

	ၨ	-	\rightarrow	•	•	•	•	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	3	3	14	28	3	9	41	183	101	63	230	14
Future Volume (vph)	3	3	14	28	3	9	41	183	101	63	230	14
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.905			0.970			0.958			0.994	
Flt Protected		0.993			0.966			0.994			0.990	
Satd. Flow (prot)	0	951	0	0	946	0	0	1328	0	0	1461	0
Flt Permitted		0.993			0.966			0.994			0.990	
Satd. Flow (perm)	0	951	0	0	946	0	0	1328	0	0	1461	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	64%	67%	0%	22%	15%	7%	13%	7%	2%	7%
Adj. Flow (vph)	3	3	14	28	3	9	41	183	101	63	230	14
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	20	0	0	40	0	0	325	0	0	307	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 48.3%

ICU Level of Service A

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	3	3	14	28	3	9	41	183	101	63	230	14
Future Vol, veh/h	3	3	14	28	3	9	41	183	101	63	230	14
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	64	67	0	22	15	7	13	7	2	7
Mvmt Flow	3	3	14	28	3	9	41	183	101	63	230	14
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	630	729	237	673	686	234	244	0	0	284	0	0
Stage 1	363	363	-	316	316	-		-	-		-	-
Stage 2	267	366	_	358	370	-	-	_	_	-	_	_
Critical Hdwy	7.1	6.5	6.84	7.77	6.5	6.42	4.25	-	-	4.17	-	_
Critical Hdwy Stg 1	6.1	5.5	-	6.77	5.5	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.77	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.876	4.103	4	3.498	2.335	_	_	2.263	_	_
Pot Cap-1 Maneuver	397	352	671	294	373	759	1250	-	-	1250	-	_
Stage 1	660	628	-	577	659	-	-	_	_	-	_	_
Stage 2	743	626	-	545	624	_	-	_	-	-	-	_
Platoon blocked, %								_	_		_	_
Mov Cap-1 Maneuver	352	318	671	258	337	759	1250	-	-	1250	-	-
Mov Cap-2 Maneuver	352	318	-	258	337	_	-	-	-	-	-	-
Stage 1	621	591	-	554	633	-	-	-	-	-	-	_
Stage 2	702	601	-	500	587	-	-	_	_	-	_	-
J												
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	12.27			18.35			1.01			1.65		
HCM LOS	В			C								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		212	-	-	515	310	365	-	_			
HCM Lane V/C Ratio		0.033	_		0.039		0.05	_	_			
HCM Ctrl Dly (s/v)		8	0	-	12.3	18.3	8	0	_			
HCM Lane LOS		A	A	_	В	C	A	A	_			
HCM 95th %tile Q(veh)	0.1	-	-	0.1	0.4	0.2	-	-			
2 22 70 2(1011)	,											

	۶	→	←	•	>	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ની	f.		W		
Traffic Volume (vph)	4	122	35	0	0	1	
Future Volume (vph)	4	122	35	0	0	1	
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt					0.865		
Flt Protected		0.998					
Satd. Flow (prot)	0	1433	1165	0	1480	0	
Flt Permitted		0.998					
Satd. Flow (perm)	0	1433	1165	0	1480	0	
Link Speed (k/h)		50	50		50		
Link Distance (m)		384.9	196.9		50.8		
Travel Time (s)		27.7	14.2		3.7		
Confl. Peds. (#/hr)	2			2		1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	2%	14%	40%	2%	2%	2%	
Adj. Flow (vph)	4	122	35	0	0	1	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	126	35	0	1	0	
Sign Control		Free	Free		Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utiliz	ation 21.4%			IC	CU Level of	of Service	A ¢
Analysis Period (min) 15							

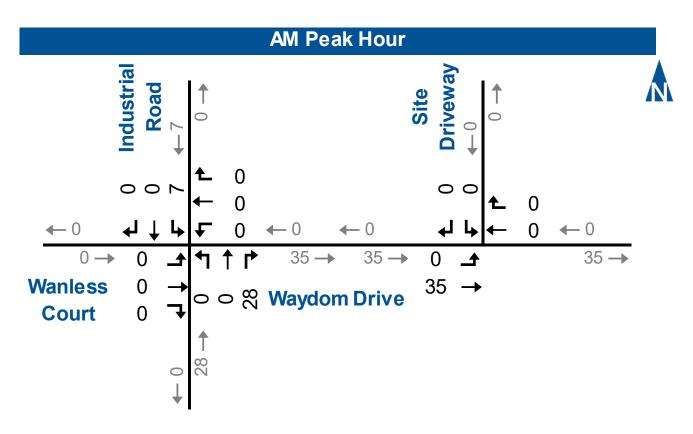
Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		स	1>		W	
Traffic Vol, veh/h	4	122	35	0	0	1
Future Vol, veh/h	4	122	35	0	0	1
Conflicting Peds, #/hr	2	0	0	2	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	-, π -	0	0	_	0	<u>-</u>
Peak Hour Factor	100	100	100	100	100	100
		14	40			2
Heavy Vehicles, %	2			2	2	
Mvmt Flow	4	122	35	0	0	1
Major/Minor	Major1	N	Major2	-	Minor2	
Conflicting Flow All	37	0	-	0	167	38
Stage 1	-	-	_	-	37	_
Stage 2	_	_	-	_	130	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	-	_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218	<u>-</u>	_		3.518	
Pot Cap-1 Maneuver	1574			_	823	1034
Stage 1	- 137	_	_	_	985	-
Stage 2	_	-	_	_	896	_
Platoon blocked, %	_	_			090	-
	1571		-	-	040	1021
Mov Cap-1 Maneuver	1571	-	-	-	818	1031
Mov Cap-2 Maneuver	-	-	-	-	818	-
Stage 1	-	-	-	-	981	-
Stage 2	-	-	-	-	894	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.23		0		8.49	
HCM LOS	0.23		U		Α	
TIOW LOO						
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		57	-	-	-	1031
HCM Lane V/C Ratio		0.003	-	-	-	0.001
HCM Ctrl Dly (s/v)		7.3	0	-	-	8.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0

	•	-	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	17	2	51	149	1	79	37	238	42	14	184	9
Future Volume (vph)	17	2	51	149	1	79	37	238	42	14	184	9
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.902			0.953			0.982			0.994	
Flt Protected		0.988			0.968			0.994			0.997	
Satd. Flow (prot)	0	1128	0	0	1315	0	0	1310	0	0	1440	0
Flt Permitted		0.988			0.968			0.994			0.997	
Satd. Flow (perm)	0	1128	0	0	1315	0	0	1310	0	0	1440	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	29%	11%	0%	1%	51%	2%	51%	21%	4%	11%
Adj. Flow (vph)	17	2	51	149	1	79	37	238	42	14	184	9
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	70	0	0	229	0	0	317	0	0	207	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalize	d											

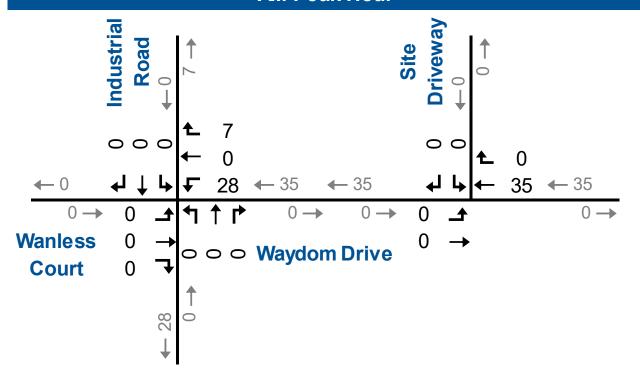
Intersection Capacity Utilization 61.7%

ICU Level of Service B

Analysis Period (min) 15


Intersection												
Int Delay, s/veh	7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	17	2	51	149	1	79	37	238	42	14	184	9
Future Vol, veh/h	17	2	51	149	1	79	37	238	42	14	184	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	29	11	0	1	51	2	51	21	4	11
Mvmt Flow	17	2	51	149	1	79	37	238	42	14	184	9
Major/Minor N	Minor2		Minor1				Major1			Major2		
Conflicting Flow All	529	571	189	546	554	259	193	0	0	280	0	0
Stage 1	217	217	-	333	333	-	-	-	-		-	-
Stage 2	313	354	-	213	221	_	_	_	_	-	_	-
Critical Hdwy	7.1	6.5	6.49	7.21	6.5	6.21	4.61	_	-	4.31	-	_
Critical Hdwy Stg 1	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	_
Follow-up Hdwy	3.5	4	3.561	3.599	4	3.309	2.659	-	_	2.389	-	_
Pot Cap-1 Maneuver	463	434	789	435	443	782	1135	-	-	1181	-	-
Stage 1	790	727	-	662	647	-	-	-	-	-	-	-
Stage 2	702	634	-	769	724	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	394	411	789	384	420	782	1135	-	-	1181	-	-
Mov Cap-2 Maneuver	394	411	-	384	420	-	-	-	-	-	-	-
Stage 1	780	718	-	636	622	-	-	-	-	-	-	-
Stage 2	606	609	-	708	715	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	11.53			19.96			0.97			0.55		
HCM LOS	В			С								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		204	-	-	622	466	121	-				
HCM Lane V/C Ratio		0.033	_			0.491		<u>-</u>	_			
HCM Ctrl Dly (s/v)		8.3	0	_	11.5	20	8.1	0	_			
HCM Lane LOS		A	A	_	В	C	A	A	_			
HCM 95th %tile Q(veh))	0.1	-	_	0.4	2.7	0	-	_			
7000 3(1011)		V. 1			-							

	•	→	←	•	\	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		4	ĵ.		¥			
Traffic Volume (vph)	1	29	158	0	0	4		
Future Volume (vph)	1	29	158	0	0	4		
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt					0.865			
Flt Protected		0.998						
Satd. Flow (prot)	0	1083	1554	0	1480	0		
Flt Permitted		0.998						
Satd. Flow (perm)	0	1083	1554	0	1480	0		
Link Speed (k/h)		50	50		50			
Link Distance (m)		384.9	196.9		50.8			
Travel Time (s)		27.7	14.2		3.7			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Heavy Vehicles (%)	2%	52%	5%	2%	2%	2%		
Adj. Flow (vph)	1	29	158	0	0	4		
Shared Lane Traffic (%)								
Lane Group Flow (vph)	0	30	158	0	4	0		
Sign Control		Free	Free		Stop			
Intersection Summary								
Area Type:	Other							
Control Type: Unsignalized								
Intersection Capacity Utiliza			IC	U Level o	of Service	Α		
Analysis Period (min) 15								


Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	7>	,,_,	W	
Traffic Vol, veh/h	1	29	158	0	0	4
Future Vol, veh/h	1	29	158	0	0	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	_	-	-	-	0	-
Veh in Median Storage	e.# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	52	5	2	2	2
Mymt Flow	1	29	158	0	0	4
IVIVIII I IOW	Į.	23	100	U	U	7
	Major1		Major2		Minor2	
Conflicting Flow All	158	0	-	0	189	158
Stage 1	-	-	-	-	158	-
Stage 2	-	-	-	-	31	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1422	-	-	-	800	887
Stage 1	-	-	-	-	871	-
Stage 2	-	-	-	-	992	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1422	_	-	-	799	887
Mov Cap-2 Maneuver	-	_	_	_	799	-
Stage 1	_	_	_	_	870	_
Stage 2	_	_	_	_	992	_
Olago Z					33 <u>Z</u>	
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.25		0		9.08	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SRI n1
Capacity (veh/h)	к	60	LDI	WDI	WOIL	887
HCM Lane V/C Ratio		0.001	•		-	0.005
		7.5	-	-		9.1
HCM Lang LOS			0	-	-	
HCM Lane LOS HCM 95th %tile Q(veh	1	A 0	Α	-	-	A 0
			-	-	_	

Appendix D

Background Development Traffic Volumes

Background Development Traffic Volumes

Appendix E

Five-Year Background Traffic Operations Reports

	•	-	•	•	•	•		†	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	3	3	15	31	3	10	45	202	140	77	254	15
Future Volume (vph)	3	3	15	31	3	10	45	202	140	77	254	15
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.904			0.969			0.951			0.994	
Flt Protected		0.993			0.966			0.994			0.989	
Satd. Flow (prot)	0	944	0	0	943	0	0	1316	0	0	1458	0
Flt Permitted		0.993			0.966			0.994			0.989	
Satd. Flow (perm)	0	944	0	0	943	0	0	1316	0	0	1458	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	64%	67%	0%	22%	15%	7%	13%	7%	2%	7%
Adj. Flow (vph)	3	3	15	31	3	10	45	202	140	77	254	15
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	21	0	0	44	0	0	387	0	0	346	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											

Control Type: Unsignalized

Intersection Capacity Utilization 55.4%

ICU Level of Service B

Analysis Period (min) 15

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	3	3	15	31	3	10	45	202	140	77	254	15
Future Vol, veh/h	3	3	15	31	3	10	45	202	140	77	254	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	64	67	0	22	15	7	13	7	2	7
Mvmt Flow	3	3	15	31	3	10	45	202	140	77	254	15
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	709	848	262	772	785	272	269	0	0	342	0	0
Stage 1	416	416	-	362	362			-	-	-	-	-
Stage 2	294	432	_	410	423	_	_	_	_	-	-	_
Critical Hdwy	7.1	6.5	6.84	7.77	6.5	6.42	4.25	-	-	4.17	-	_
Critical Hdwy Stg 1	6.1	5.5	-	6.77	5.5		-	_	_	-	-	_
Critical Hdwy Stg 2	6.1	5.5	-	6.77	5.5	-	-	-	-	-	-	_
Follow-up Hdwy	3.5	4	3.876	4.103	4	3.498	2.335	_	_	2.263	-	_
Pot Cap-1 Maneuver	352	301	648	249	327	721	1223	-	-	1190	-	_
Stage 1	618	596	-	542	629	-	-	_	_	-	_	_
Stage 2	719	586	-	508	591	_	-	-	-	-	-	_
Platoon blocked, %								_	_		_	_
Mov Cap-1 Maneuver	303	265	648	213	288	721	1223	-	-	1190	-	-
Mov Cap-2 Maneuver	303	265	-	213	288	_	-	-	-	-	-	-
Stage 1	571	550	-	517	600	_	-	-	-	-	_	-
Stage 2	673	559	-	456	546	-	-	-	_	-	-	-
J												
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	12.96			21.75			0.94			1.83		
HCM LOS	В			C								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		193	-	-	473	259	396	-	-			
HCM Lane V/C Ratio		0.037	_		0.044		0.065	_	_			
HCM Ctrl Dly (s/v)		8.1	0	_	13	21.8	8.2	0	_			
HCM Lane LOS		A	A	_	В	C	A	A	_			
HCM 95th %tile Q(veh)	0.1	-	-	0.1	0.6	0.2	-	-			
	,					J.J						

	•	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	f.		W	
Traffic Volume (vph)	4	170	39	0	0	1
Future Volume (vph)	4	170	39	0	0	1
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt					0.865	
Flt Protected		0.999				
Satd. Flow (prot)	0	1433	1165	0	1480	0
Flt Permitted		0.999				
Satd. Flow (perm)	0	1433	1165	0	1480	0
Link Speed (k/h)		50	50		50	
Link Distance (m)		384.9	196.9		50.8	
Travel Time (s)		27.7	14.2		3.7	
Confl. Peds. (#/hr)	2			2		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	14%	40%	2%	2%	2%
Adj. Flow (vph)	4	170	39	0	0	1
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	174	39	0	1	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalize						
Intersection Capacity Utiliz	zation 24.3%			IC	U Level o	of Service
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	4		W	
Traffic Vol, veh/h	4	170	39	0	0	1
Future Vol, veh/h	4	170	39	0	0	1
Conflicting Peds, #/hr	2	0	0	2	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		- -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	5, π -	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	14	40	2	2	2
Mvmt Flow	4	170	39	0	0	1
Major/Minor	Major1	N	Major2		Minor2	
Conflicting Flow All	41	0		0	219	42
Stage 1	-	_	-	_	41	_
Stage 2	_	_	_	_	178	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	-	_	_	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218	_	_		3.518	
Pot Cap-1 Maneuver	1568	_	_	_	769	1029
Stage 1	1300	_	_	_	981	1023
	_	-	-		853	
Stage 2	-			-	000	-
Platoon blocked, %	4505	-	-	-	704	4000
Mov Cap-1 Maneuver	1565	-	-	-	764	1026
Mov Cap-2 Maneuver	-	-	-	-	764	-
Stage 1	-	-	-	-	977	-
Stage 2	-	-	-	-	851	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.17		0		8.51	
HCM LOS	0.17		U		Α	
TIOW LOS						
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		41	-	-	-	1026
HCM Lane V/C Ratio		0.003	-	-	-	0.001
HCM Ctrl Dly (s/v)		7.3	0	-	-	8.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	_	0
	,					

	۶	→	\rightarrow	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	19	2	56	193	1	94	41	263	46	15	203	10
Future Volume (vph)	19	2	56	193	1	94	41	263	46	15	203	10
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.902			0.956			0.982			0.994	
Flt Protected		0.988			0.968			0.994			0.997	
Satd. Flow (prot)	0	1128	0	0	1317	0	0	1310	0	0	1441	0
Flt Permitted		0.988			0.968			0.994			0.997	
Satd. Flow (perm)	0	1128	0	0	1317	0	0	1310	0	0	1441	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	29%	11%	0%	1%	51%	2%	51%	21%	4%	11%
Adj. Flow (vph)	19	2	56	193	1	94	41	263	46	15	203	10
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	77	0	0	288	0	0	350	0	0	228	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized												
Intersection Capacity Utiliza	ation 69.5%			IC	CU Level of	of Service	С					
Analysis Period (min) 15												

Synchro 12 Report Page 1

Intersection												
Int Delay, s/veh	10.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	19	2	56	193	1	94	41	263	46	15	203	10
Future Vol, veh/h	19	2	56	193	1	94	41	263	46	15	203	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	<u> </u>	None	<u> </u>	_	None	-	-	None	-	_	None
Storage Length	_	-	-	-	_	-	-	-	-	-	_	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	_	-	0	-
Grade, %	_	0	-	_	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	29	11	0	1	51	2	51	21	4	11
Mvmt Flow	19	2	56	193	1	94	41	263	46	15	203	10
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	584	629	208	602	611	286	213	0	0	309	0	0
Stage 1	238	238	-	368	368			-	_	-	-	-
Stage 2	346	391	-	234	243	-	_	-	-	-	-	_
Critical Hdwy	7.1	6.5	6.49	7.21	6.5	6.21	4.61	-	-	4.31	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.561	3.599	4	3.309	2.659	-	-	2.389	-	-
Pot Cap-1 Maneuver	426	402	769	399	411	755	1114	-	-	1151	-	-
Stage 1	770	712	-	634	625	-	-	-	-	-	-	-
Stage 2	674	611	-	749	708	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	351	378	769	346	387	755	1114	-	-	1151	-	-
Mov Cap-2 Maneuver	351	378	-	346	387	-	-	-	-	-	-	-
Stage 1	758	701	-	605	597	-	-	-	-	-	-	-
Stage 2	563	583	-	682	698	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	12.13			30.18			0.98			0.54		
HCM LOS	В			D								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		205	-	-	582	421	117	-	-			
HCM Lane V/C Ratio		0.037	-	-	0.132	0.685	0.013	-	-			
HCM Ctrl Dly (s/v)		8.4	0	-	12.1	30.2	8.2	0	-			
HCM Lane LOS		Α	Α	-	В	D	Α	Α	-			
HCM 95th %tile Q(veh))	0.1	-	-	0.5	5	0	-	-			

	۶	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની	ĵ.		W	
Traffic Volume (vph)	1	32	209	0	0	4
Future Volume (vph)	1	32	209	0	0	4
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected		0.998				
Satd. Flow (prot)	0	1082	1554	0	1480	0
Flt Permitted		0.998				
Satd. Flow (perm)	0	1082	1554	0	1480	0
Link Speed (k/h)		50	50		50	
Link Distance (m)		384.9	196.9		50.8	
Travel Time (s)		27.7	14.2		3.7	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	52%	5%	2%	2%	2%
Adj. Flow (vph)	1	32	209	0	0	4
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	33	209	0	4	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utilization	ation 22.7%			IC	U Level o	of Service
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1≯	11 DIX	W	USIN
Traffic Vol, veh/h	1	32	209	0	0	4
Future Vol, veh/h	1	32	209	0	0	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	Stop -	None
Storage Length	<u>-</u>	NOTIC	_	NOHE -	0	None -
Veh in Median Storage		0	0	_	0	
Grade, %	400	0	0	400	0	400
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	52	5	2	2	2
Mvmt Flow	1	32	209	0	0	4
Major/Minor I	Major1	N	Major2	1	Minor2	
Conflicting Flow All	209	0	- viajoiz	0	243	209
Stage 1	209	U			209	
	_	-		-	34	- -
Stage 2		-	-	-		
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1362	-	-	-	745	831
Stage 1	-	-	-	-	826	-
Stage 2	-	-	-	-	988	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1362	_	_	-	745	831
Mov Cap-2 Maneuver	_	_	_	_	745	-
Stage 1	_	_	_	_	825	_
Stage 2	_	_	_	_	988	_
Olage 2					300	
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.23		0		9.35	
HCM LOS					Α	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		55	-	-	-	831
HCM Lane V/C Ratio		0.001	-	-	-	0.005
HCM Ctrl Dly (s/v)		7.6	0	-	-	9.4
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)		0	_	_	_	0

Appendix F

Ten-Year Background Traffic Operations Reports

	•	-	\rightarrow	•	•	•	•	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	4	4	17	34	4	11	50	223	151	84	280	17
Future Volume (vph)	4	4	17	34	4	11	50	223	151	84	280	17
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.908			0.970			0.952			0.994	
Flt Protected		0.992			0.966			0.994			0.989	
Satd. Flow (prot)	0	962	0	0	948	0	0	1318	0	0	1458	0
Flt Permitted		0.992			0.966			0.994			0.989	
Satd. Flow (perm)	0	962	0	0	948	0	0	1318	0	0	1458	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	64%	67%	0%	22%	15%	7%	13%	7%	2%	7%
Adj. Flow (vph)	4	4	17	34	4	11	50	223	151	84	280	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	25	0	0	49	0	0	424	0	0	381	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 59.2%

ICU Level of Service B

Intersection												
Int Delay, s/veh	3.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	4	4	17	34	4	11	50	223	151	84	280	17
Future Vol, veh/h	4	4	17	34	4	11	50	223	151	84	280	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	_	_	None	_	-	None
Storage Length	_	_	-	_	_	-	_	_	_	_	-	-
Veh in Median Storage	.# -	0	-	-	0	_	-	0	_	-	0	_
Grade, %	_	0	-	_	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	64	67	0	22	15	7	13	7	2	7
Mvmt Flow	4	4	17	34	4	11	50	223	151	84	280	17
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	782	931	289	849	864	299	297	0	0	374	0	0
Stage 1	457	457	-	399	399	-	-	-	-	-	-	-
Stage 2	325	474	-	450	465	-	-	-	-	-	-	_
Critical Hdwy	7.1	6.5	6.84	7.77	6.5	6.42	4.25	-	-	4.17	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.77	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.77	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.876	4.103	4	3.498	2.335	-	-	2.263	-	-
Pot Cap-1 Maneuver	314	269	625	219	294	696	1194	-	-	1158	-	-
Stage 1	588	571	-	516	606	-	-	-	-	-	-	-
Stage 2	692	561	-	481	566	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	264	232	625	181	254	696	1194	-	-	1158	-	-
Mov Cap-2 Maneuver	264	232	-	181	254	-	-	-	-	-	-	-
Stage 1	536	522	-	488	573	-	-	-	-	-	-	-
Stage 2	639	531	-	424	517	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	14.13			25.53			0.96			1.84		
HCM LOS	В			D								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		196	-	-		224	392	-	-			
HCM Lane V/C Ratio		0.042	-	-		0.219		_	-			
HCM Ctrl Dly (s/v)		8.1	0	-		25.5	8.4	0	-			
HCM Lane LOS		Α	A	-	В	D	Α	A	-			
HCM 95th %tile Q(veh))	0.1	-	-	0.2	0.8	0.2	-	-			

	•	→	•	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ĵ.		W	
Traffic Volume (vph)	4	184	43	0	0	1
Future Volume (vph)	4	184	43	0	0	1
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt					0.865	
Flt Protected		0.999				
Satd. Flow (prot)	0	1433	1165	0	1480	0
Flt Permitted		0.999				
Satd. Flow (perm)	0	1433	1165	0	1480	0
Link Speed (k/h)		50	50		50	
Link Distance (m)		384.9	196.9		50.8	
Travel Time (s)		27.7	14.2		3.7	
Confl. Peds. (#/hr)	2			2		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	14%	40%	2%	2%	2%
Adj. Flow (vph)	4	184	43	0	0	1
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	188	43	0	1	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalize						
Intersection Capacity Utiliz	zation 25.2%			IC	U Level o	of Service
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	1≽		W	
Traffic Vol, veh/h	4	184	43	0	0	1
Future Vol, veh/h	4	184	43	0	0	1
Conflicting Peds, #/hr	2	0	0	2	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	-, π -	0	0	_	0	<u>-</u>
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	14	40	2	2	2
Mvmt Flow	4	184	43	0	0	1
Major/Minor	Major1	N	Major2	ı	Minor2	
Conflicting Flow All	45	0		0	237	46
Stage 1	_	_	-	_	45	_
Stage 2	_	_	_	_	192	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	- 1.12	<u>-</u>	_	_	5.42	-
Critical Hdwy Stg 2	_	_		_	5.42	_
Follow-up Hdwy	2.218	_	_		3.518	
Pot Cap-1 Maneuver	1563	_	-	_	751	1023
		_	-	_		1023
Stage 1	-	-	-		977	
Stage 2	-	-	-	-	841	-
Platoon blocked, %	4500	-	-	-	7.10	1001
Mov Cap-1 Maneuver	1560	-	-	-	746	1021
Mov Cap-2 Maneuver	-	-	-	-	746	-
Stage 1	-	-	-	-	973	-
Stage 2	-	-	-	-	839	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.16		0		8.53	
HCM LOS	0.10		U			
HCIVI LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		38	_	_	_	1021
HCM Lane V/C Ratio		0.003	-	-		0.001
HCM Ctrl Dly (s/v)		7.3	0	_	_	8.5
HCM Lane LOS		A	A	_	_	A
HCM 95th %tile Q(veh)	0	- '\	_	_	0
	1					

	۶	-	\rightarrow	•	←	•	•	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	21	2	62	210	1	103	45	290	51	17	224	11
Future Volume (vph)	21	2	62	210	1	103	45	290	51	17	224	11
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.902			0.956			0.982			0.994	
Flt Protected		0.988			0.968			0.994			0.997	
Satd. Flow (prot)	0	1127	0	0	1317	0	0	1310	0	0	1440	0
Flt Permitted		0.988			0.968			0.994			0.997	
Satd. Flow (perm)	0	1127	0	0	1317	0	0	1310	0	0	1440	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	29%	11%	0%	1%	51%	2%	51%	21%	4%	11%
Adj. Flow (vph)	21	2	62	210	1	103	45	290	51	17	224	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	85	0	0	314	0	0	386	0	0	252	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized	1											

Control Type: Unsignalized

Intersection Capacity Utilization 74.7%

ICU Level of Service D

Intersection												
Int Delay, s/veh	15.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	21	2	62	210	1	103	45	290	51	17	224	11
Future Vol, veh/h	21	2	62	210	1	103	45	290	51	17	224	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	·-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	29	11	0	1	51	2	51	21	4	11
Mvmt Flow	21	2	62	210	1	103	45	290	51	17	224	11
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	644	695	230	665	675	316	235	0	0	341	0	0
Stage 1	264	264	-	406	406	-	-	-	-	-	-	-
Stage 2	381	431	-	259	269	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.49	7.21	6.5	6.21	4.61	-	-	4.31	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.561	3.599	4	3.309	2.659	-	-	2.389	-	-
Pot Cap-1 Maneuver	389	369	747	362	378	727	1092	-	-	1119	-	-
Stage 1	746	694	-	604	602	-	-	-	-	-	-	-
Stage 2	646	586	-	726	690	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	310	344	747	308	353	727	1092	-	-	1119	-	-
Mov Cap-2 Maneuver	310	344	-	308	353	-	-	-	-	-	-	-
Stage 1	733	682	-	574	571	-	-	-	-	-	-	-
Stage 2	525	556	-	652	678	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	12.85			46.61			0.98			0.56		
HCM LOS	В			Е								
Minor Lane/Major Mvm	nt _	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		204	-	-	543	380	120	-	-			
HCM Lane V/C Ratio		0.041	-	-	0.157	0.827	0.015	-	-			
HCM Ctrl Dly (s/v)		8.4	0	-	12.9	46.6	8.3	0	-			
HCM Lane LOS		Α	Α	-	В	Е	Α	Α	-			
HCM 95th %tile Q(veh))	0.1	-	-	0.6	7.5	0	-	-			

	•	→	•	•	\	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	ĵ.		¥		
Traffic Volume (vph)	1	35	228	0	0	4	
Future Volume (vph)	1	35	228	0	0	4	
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected		0.999					
Satd. Flow (prot)	0	1082	1554	0	1480	0	
Flt Permitted		0.999					
Satd. Flow (perm)	0	1082	1554	0	1480	0	
Link Speed (k/h)		50	50		50		
Link Distance (m)		384.9	196.9		50.8		
Travel Time (s)		27.7	14.2		3.7		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	2%	52%	5%	2%	2%	2%	
Adj. Flow (vph)	1	35	228	0	0	4	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	36	228	0	4	0	
Sign Control		Free	Free		Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalize	d						
Intersection Capacity Utiliz	zation 23.8%			IC	CU Level o	of Service	, A
Analysis Period (min) 15							

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	7∌	ופייי	₩.	אופט
Traffic Vol, veh/h	1	35	228	0	T	4
Future Vol, veh/h	1	35	228	0	0	4
	0	0	0	0	0	0
Conflicting Peds, #/hr						
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	9,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	52	5	2	2	2
Mvmt Flow	1	35	228	0	0	4
Major/Minor	Major1		Majara		/linar?	
	Major1		Major2		Minor2	000
Conflicting Flow All	228	0	-	0	265	228
Stage 1	-	-	-	-	228	-
Stage 2	-	-	-	-	37	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1340	-	-	-	724	811
Stage 1	-	-	-	-	810	-
Stage 2	-	-	-	-	985	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1340	-	_	-	724	811
Mov Cap-2 Maneuver	_	_	_	_	724	_
Stage 1	_	_	_	_	809	_
Stage 2	_	_	_	_	985	_
Olage 2					300	
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.21		0		9.46	
HCM LOS					Α	
NA: 1 /NA: NA		EDI	EDT	MOT	MDD	0DL 4
Minor Lane/Major Mvm	nt	EBL	EBT	WBT		
Capacity (veh/h)		50	-	-	-	• • • •
HCM Lane V/C Ratio		0.001	-	-	-	0.005
HCM Ctrl Dly (s/v)		7.7	0	-	-	9.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0

Appendix G

Five-Year Total Traffic Operations Reports

	•	-	•	•	←	•	4	†	~	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	3	3	15	32	3	10	45	202	142	78	254	15
Future Volume (vph)	3	3	15	32	3	10	45	202	142	78	254	15
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.904			0.970			0.951			0.994	
Flt Protected		0.993			0.966			0.994			0.989	
Satd. Flow (prot)	0	944	0	0	942	0	0	1316	0	0	1458	0
Flt Permitted		0.993			0.966			0.994			0.989	
Satd. Flow (perm)	0	944	0	0	942	0	0	1316	0	0	1458	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	64%	67%	0%	22%	15%	7%	13%	7%	2%	7%
Adj. Flow (vph)	3	3	15	32	3	10	45	202	142	78	254	15
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	21	0	0	45	0	0	389	0	0	347	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalized	t											

Intersection Capacity Utilization 55.9% Analysis Period (min) 15

ICU Level of Service B

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	3	3	15	32	3	10	45	202	142	78	254	15
Future Vol, veh/h	3	3	15	32	3	10	45	202	142	78	254	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	64	67	0	22	15	7	13	7	2	7
Mvmt Flow	3	3	15	32	3	10	45	202	142	78	254	15
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	711	852	262	775	788	273	269	0	0	344	0	0
Stage 1	418	418	- 202	363	363	-	200	-	-	UTT	-	-
Stage 2	294	434	_	412	425	_	_	_	_	_	_	
Critical Hdwy	7.1	6.5	6.84	7.77	6.5	6.42	4.25	_		4.17	_	
Critical Hdwy Stg 1	6.1	5.5	U.U- 1	6.77	5.5	U.7Z	7.20	_	_		_	
Critical Hdwy Stg 1	6.1	5.5	_	6.77	5.5	_					_	
Follow-up Hdwy	3.5	4	3.876	4.103	4	3.498	2.335	_	_	2.263	_	
Pot Cap-1 Maneuver	351	299	648	248	326	720	1223			1188	_	
Stage 1	617	594	-	541	628	120	1220	_	_	- 100	_	
Stage 2	719	585	-	507	590	_		_		_		
Platoon blocked, %	113	303	_	301	330	_		_	_	_	_	
Mov Cap-1 Maneuver	301	263	648	211	286	720	1223	_		1188	_	
Mov Cap-1 Maneuver	301	263	-	211	286	120	1220	_	_	- 1100	_	
Stage 1	569	548	-	516	599	_		_		_		
Stage 2	673	557	_	454	544		_	_		_	_	_
Glaye Z	013	551	_	704	J44		_	_	<u>-</u>	-	<u>-</u>	-
Approach	EB			WD			ND			CD		
Approach				WB			NB			SB		
HCM Ctrl Dly, s/v	12.98			22.05			0.93			1.85		
HCM LOS	В			С								
NA: I /N 4		ND	NOT	NDD.	-DL 4	A/DL -	051	ODT	000			
Minor Lane/Major Mvm	ıt	NBL	NBT		EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		192	-	-	472	256	400	-	-			
HCM Lane V/C Ratio		0.037	-			0.176		-	-			
HCM Ctrl Dly (s/v)		8.1	0	-	13	22	8.2	0	-			
HCM Lane LOS		Α	Α	-	В	С	Α	Α	-			
HCM 95th %tile Q(veh)		0.1	-	-	0.1	0.6	0.2	-	-			

	•	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ની	f.		W	
Traffic Volume (vph)	7	170	39	0	0	2
Future Volume (vph)	7	170	39	0	0	2
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor						
Frt					0.865	
Flt Protected		0.998				
Satd. Flow (prot)	0	1434	1165	0	1480	0
Flt Permitted		0.998				
Satd. Flow (perm)	0	1434	1165	0	1480	0
Link Speed (k/h)		50	50		50	
Link Distance (m)		384.9	196.9		50.8	
Travel Time (s)		27.7	14.2		3.7	
Confl. Peds. (#/hr)	2			2		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	14%	40%	2%	2%	2%
Adj. Flow (vph)	7	170	39	0	0	2
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	177	39	0	2	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliz	zation 27.2%			IC	U Level o	of Service
Analysis Period (min) 15						

0.3 EBL					
FRI					
	EBT	WBT	WBR	SBL	SBR
	4	1		₩	
7	170	39	0	0	2
					2
					1
					Stop
					None
	TNOTIC	_			-
	0	0			_
					_
					100
					2
1	170	39	Ü	U	2
Major1	N	Major2	N	Vinor2	
		-	0	225	42
_	-	-	_		-
_	_	_	_		_
4.12	_	_	_		6.22
	_	_	_		-
	_	_	_		_
	_	_	_		
					1029
	_	_			1023
	_	_			_
_	-	_		040	-
1565		_		757	1026
	-	-			
	_				-
	-	-	-		-
				846	-
EB		WB		SB	
0.20		U			
				, , ,	
nt	EBL	EBT	WBT		
	71	-	-		1026
		-	-	-	0.002
	7.3	0	-	-	8.5
	Α	Α	-	-	Α
1)	/ \				
	4.12 - 2.218 1568 - - 1565	2 0 Free Free - None - 0 100 100 2 14 7 170 Major1 N 41 0 4.12 2.218 - 1568 1565 EB 0.29	2 0 0 Free Free Free - None 0 0 100 100 100 2 14 40 7 170 39 Major1 Major2 41 0 4.12 2.218 1568 1565	2 0 0 2 Free Free Free Free - None - None - 0 0 0 0 - 100 100 100 100 2 14 40 2 7 170 39 0 Major1 Major2 N 2.218 2.218 1565 1565 EB WB 0.29 0	2 0 0 2 0 Free Free Free Stop - None - None - - - - 0 - 0 e,# 0 0 - 0 100

	•	-	\rightarrow	•	•	•	•	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	19	2	56	195	1	95	41	263	47	15	203	10
Future Volume (vph)	19	2	56	195	1	95	41	263	47	15	203	10
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.902			0.956			0.982			0.994	
Flt Protected		0.988			0.968			0.994			0.997	
Satd. Flow (prot)	0	1128	0	0	1317	0	0	1309	0	0	1441	0
Flt Permitted		0.988			0.968			0.994			0.997	
Satd. Flow (perm)	0	1128	0	0	1317	0	0	1309	0	0	1441	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	29%	11%	0%	1%	51%	2%	51%	21%	4%	11%
Adj. Flow (vph)	19	2	56	195	1	95	41	263	47	15	203	10
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	77	0	0	291	0	0	351	0	0	228	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Uncignalized												

Control Type: Unsignalized

Intersection Capacity Utilization 69.8%

ICU Level of Service C

Intersection												
Int Delay, s/veh	10.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	19	2	56	195	1	95	41	263	47	15	203	10
Future Vol, veh/h	19	2	56	195	1	95	41	263	47	15	203	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	· -	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	29	11	0	1	51	2	51	21	4	11
Mvmt Flow	19	2	56	195	1	95	41	263	47	15	203	10
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	584	630	208	603	612	287	213	0	0	310	0	0
Stage 1	238	238	-	369	369	-	-	-	-	-	_	-
Stage 2	346	392	_	234	243	_	_	_	_	-	-	_
Critical Hdwy	7.1	6.5	6.49	7.21	6.5	6.21	4.61	-	-	4.31	-	_
Critical Hdwy Stg 1	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	_
Follow-up Hdwy	3.5	4	3.561	3.599	4	3.309	2.659	_	_	2.389	-	_
Pot Cap-1 Maneuver	426	401	769	398	411	755	1114	-	-	1150	-	_
Stage 1	770	712	-	633	625	-	-	-	-	-	-	-
Stage 2	674	610	-	749	708	-	-	-	-	-	-	_
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	350	378	769	346	387	755	1114	-	-	1150	-	-
Mov Cap-2 Maneuver	350	378	-	346	387	-	-	-	-	-	-	-
Stage 1	758	701	-	605	597	-	-	-	-	-	-	-
Stage 2	562	583	-	682	698	-	-	-	-	-	-	-
, and the second												
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	12.13			30.7			0.98			0.54		
HCM LOS	В			D								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		204	-	-	581	420	117	-	_			
HCM Lane V/C Ratio		0.037	_			0.692		_	_			
HCM Ctrl Dly (s/v)		8.4	0	_	12.1	30.7	8.2	0	_			
HCM Lane LOS		A	A	_	В	D	A	A	_			
HCM 95th %tile Q(veh))	0.1	-	_	0.5	5.1	0	-	_			
222 7000 21(100)												

	•	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	f.		W	
Traffic Volume (vph)	2	32	209	0	0	7
Future Volume (vph)	2	32	209	0	0	7
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected		0.997				
Satd. Flow (prot)	0	1091	1554	0	1480	0
Flt Permitted		0.997				
Satd. Flow (perm)	0	1091	1554	0	1480	0
Link Speed (k/h)		50	50		50	
Link Distance (m)		384.9	196.9		50.8	
Travel Time (s)		27.7	14.2		3.7	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	52%	5%	2%	2%	2%
Adj. Flow (vph)	2	32	209	0	0	7
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	34	209	0	7	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalize						
Intersection Capacity Utiliz	zation 22.7%			IC	CU Level of	of Service
Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1≽		W	
Traffic Vol, veh/h	2	32	209	0	0	7
Future Vol, veh/h	2	32	209	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	z, π -	0	0	_	0	_
,	100		100			
Peak Hour Factor		100		100	100	100
Heavy Vehicles, %	2	52	5	2	2	2
Mvmt Flow	2	32	209	0	0	7
Major/Minor	Major1	N	Major2		Minor2	
Conflicting Flow All	209	0	-	0	245	209
Stage 1	-	-	_	-	209	-
Stage 2	_	<u>-</u>	_	_	36	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
			-			
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1362	-	-	-	743	831
Stage 1	-	-	-	-	826	-
Stage 2	-	-	-	-	986	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1362	-	-	-	742	831
Mov Cap-2 Maneuver	-	_	_	_	742	-
Stage 1	_	_	_	_	825	_
Stage 2	_	_		_	986	_
Staye 2	_	_	-	_	900	-
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.45		0		9.37	
HCM LOS					Α	
Minor Lane/Major Mvm	<u>nt</u>	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		106	-	-	-	831
HCM Lane V/C Ratio		0.001	-	-	-	0.008
HCM Ctrl Dly (s/v)		7.6	0	-	-	9.4
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0
,						

Appendix H

Ten-Year Total Traffic Operations Reports

	•	-	\rightarrow	•	←	•	•	†	/	\	↓	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	4	4	17	35	4	11	50	223	153	85	280	17
Future Volume (vph)	4	4	17	35	4	11	50	223	153	85	280	17
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.908			0.970			0.952			0.994	
Flt Protected		0.992			0.966			0.994			0.989	
Satd. Flow (prot)	0	962	0	0	947	0	0	1317	0	0	1458	0
Flt Permitted		0.992			0.966			0.994			0.989	
Satd. Flow (perm)	0	962	0	0	947	0	0	1317	0	0	1458	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	64%	67%	0%	22%	15%	7%	13%	7%	2%	7%
Adj. Flow (vph)	4	4	17	35	4	11	50	223	153	85	280	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	25	0	0	50	0	0	426	0	0	382	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Unsignalize	d											

Intersection Capacity Utilization 59.7%

ICU Level of Service B

Intersection												
Int Delay, s/veh	3.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	4	4	17	35	4	11	50	223	153	85	280	17
Future Vol, veh/h	4	4	17	35	4	11	50	223	153	85	280	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	_	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	64	67	0	22	15	7	13	7	2	7
Mvmt Flow	4	4	17	35	4	11	50	223	153	85	280	17
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	784	935	289	852	867	300	297	0	0	376	0	0
Stage 1	459	459	-	400	400	-		-	-		-	-
Stage 2	325	476	-	452	467	-	_	-	_	_	-	-
Critical Hdwy	7.1	6.5	6.84	7.77	6.5	6.42	4.25	-	-	4.17	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.77	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.77	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.876	4.103	4	3.498	2.335	-	-	2.263	-	-
Pot Cap-1 Maneuver	313	268	625	218	293	695	1194	-	-	1156	-	_
Stage 1	586	570	-	515	605	-	-	-	-	-	-	-
Stage 2	692	560	-	480	565	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	262	231	625	180	253	695	1194	-	-	1156	-	-
Mov Cap-2 Maneuver	262	231	-	180	253	-	-	-	-	-	-	-
Stage 1	534	520	-	487	573	-	-	-	-	-	-	-
Stage 2	639	530	-	422	515	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	14.16			25.93			0.96			1.86		
HCM LOS	В			D								
Minor Lane/Major Mvm	nt	NBL	NBT	NRR	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)	ıı.	195	-	-	110	221	396	- 100	אומט			
HCM Lane V/C Ratio		0.042	<u> </u>	-		0.226		_	_			
HCM Ctrl Dly (s/v)		8.1	0	-	440	25.9	8.4	0	_			
HCM Lane LOS		Α	A	_	14.2 B	23.9 D	Α	A	_			
HCM 95th %tile Q(veh)	0.1	-	_	0.2	0.8	0.2	-	_			
113111 0041 704110 04 (1011	1	0.1			J.L	0.0	J.Z					

	٠	→	+	•	/	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ની	f _a		W		
Traffic Volume (vph)	7	184	43	0	0	2	
Future Volume (vph)	7	184	43	0	0	2	
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ped Bike Factor							
Frt					0.865		
Flt Protected		0.998					
Satd. Flow (prot)	0	1434	1165	0	1480	0	
Flt Permitted		0.998					
Satd. Flow (perm)	0	1434	1165	0	1480	0	
Link Speed (k/h)		50	50		50		
Link Distance (m)		384.9	196.9		50.8		
Travel Time (s)		27.7	14.2		3.7		
Confl. Peds. (#/hr)	2			2		1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	2%	14%	40%	2%	2%	2%	
Adj. Flow (vph)	7	184	43	0	0	2	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	191	43	0	2	0	
Sign Control		Free	Free		Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized	d						
Intersection Capacity Utiliz	zation 28.0%			IC	U Level o	of Service	Α
Analysis Period (min) 15							

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		स	1>		W	
Traffic Vol, veh/h	7	184	43	0	0	2
Future Vol., veh/h	7	184	43	0	0	2
Conflicting Peds, #/hr	2	0	0	2	0	1
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	.# -	0	0	_	0	_
Grade, %	·, π -	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	14	40	2	2	2
Mvmt Flow	7	184	43	0	0	2
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	45	0		0	243	46
Stage 1	-	-	_	-	45	-
Stage 2	_	<u>-</u>	_	_	198	_
Critical Hdwy	4.12	_		_	6.42	6.22
Critical Hdwy Stg 1	4.12	_	_	_	5.42	0.22
		-				
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	
Pot Cap-1 Maneuver	1563	-	-	-	745	1023
Stage 1	-	-	-	-	977	-
Stage 2	-	-	-	-	835	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1560	-	-	-	739	1021
Mov Cap-2 Maneuver	-	-	-	-	739	-
Stage 1	_	_	_	_	971	_
Stage 2	_	_	_	_	834	_
Olago 2					001	
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.27		0		8.53	
HCM LOS					Α	
NA:		EDI	EDT	WDT	WDD	ODL 4
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		66	-	-		1021
HCM Lane V/C Ratio		0.004	-	-	-	0.002
HCM Ctrl Dly (s/v)		7.3	0	-	-	8.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh))	0	-	-	-	0

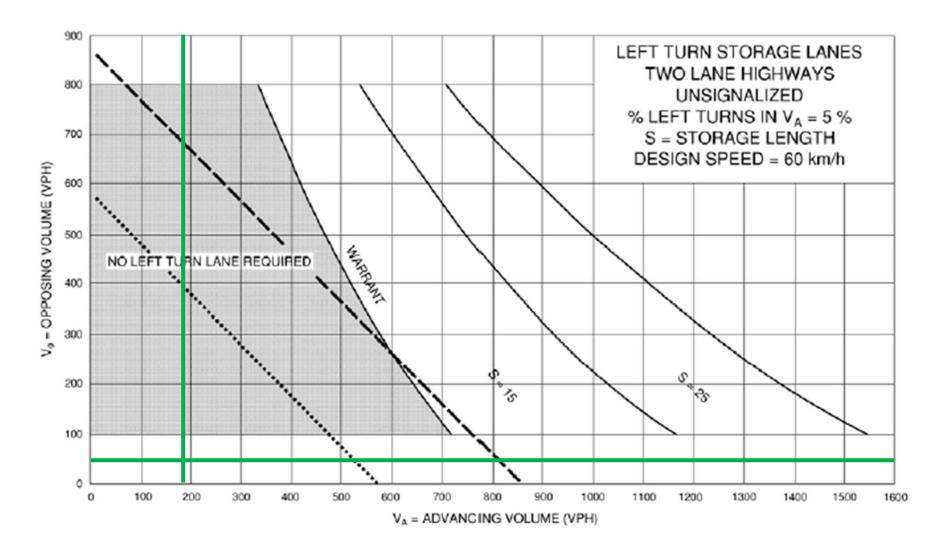
	•	-	\rightarrow	•	←	•	•	†	/	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	21	2	62	212	1	104	45	290	52	17	224	11
Future Volume (vph)	21	2	62	212	1	104	45	290	52	17	224	11
Ideal Flow (vphpl)	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550	1550
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.902			0.956			0.982			0.994	
Flt Protected		0.988			0.968			0.994			0.997	
Satd. Flow (prot)	0	1127	0	0	1317	0	0	1309	0	0	1440	0
Flt Permitted		0.988			0.968			0.994			0.997	
Satd. Flow (perm)	0	1127	0	0	1317	0	0	1309	0	0	1440	0
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		130.9			140.2			159.0			134.6	
Travel Time (s)		9.4			10.1			9.5			8.1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	29%	11%	0%	1%	51%	2%	51%	21%	4%	11%
Adj. Flow (vph)	21	2	62	212	1	104	45	290	52	17	224	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	85	0	0	317	0	0	387	0	0	252	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:	Other											
Control Type: Uncignalized												

Control Type: Unsignalized

Intersection Capacity Utilization 75.0%

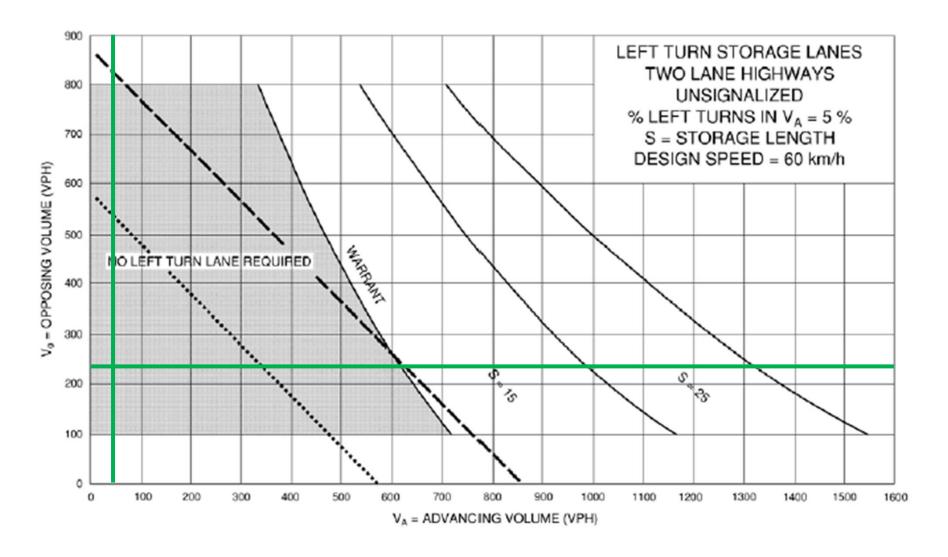
ICU Level of Service D

Intersection												
Int Delay, s/veh	16.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	21	2	62	212	1	104	45	290	52	17	224	11
Future Vol, veh/h	21	2	62	212	1	104	45	290	52	17	224	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	29	11	0	1	51	2	51	21	4	11
Mvmt Flow	21	2	62	212	1	104	45	290	52	17	224	11
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	644	696	230	665	675	316	235	0	0	342	0	0
Stage 1	264	264	-	406	406	-	-	-	-	-	-	-
Stage 2	381	432	-	259	269	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.49	7.21	6.5	6.21	4.61	-	-	4.31	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.21	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.561	3.599	4	3.309	2.659	-	-	2.389	-	-
Pot Cap-1 Maneuver	389	368	747	361	378	727	1092	-	-	1118	-	-
Stage 1	746	694	-	604	601	-	-	-	-	-	-	-
Stage 2	646	586	-	726	690	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	310	343	747	307	352	727	1092	-	-	1118	-	-
Mov Cap-2 Maneuver	310	343	-	307	352	-	-	-	-	-	-	-
Stage 1	733	682	-	573	571	-	-	-	-	-	-	-
Stage 2	524	556	-	652	678	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Ctrl Dly, s/v	12.86			47.79			0.98			0.56		
HCM LOS	В			Е								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		203	-	-	- 10	379	120	-	-			
HCM Lane V/C Ratio		0.041	_			0.836		_	_			
HCM Ctrl Dly (s/v)		8.4	0	-	40.0	47.8	8.3	0	-			
HCM Lane LOS		A	A	_	В	E	A	A	_			
HCM 95th %tile Q(veh)	0.1	-	_	0.6	7.7	0	-	_			


	۶	→	•	•	>	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ર્ન	ĵ.		¥			
Traffic Volume (vph)	2	35	228	0	0	7		
Future Volume (vph)	2	35	228	0	0	7		
Ideal Flow (vphpl)	1650	1650	1650	1650	1765	1765		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt					0.865			
Flt Protected		0.997						
Satd. Flow (prot)	0	1090	1554	0	1480	0		
Flt Permitted		0.997						
Satd. Flow (perm)	0	1090	1554	0	1480	0		
Link Speed (k/h)		50	50		50			
Link Distance (m)		384.9	196.9		50.8			
Travel Time (s)		27.7	14.2		3.7			
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Heavy Vehicles (%)	2%	52%	5%	2%	2%	2%		
Adj. Flow (vph)	2	35	228	0	0	7		
Shared Lane Traffic (%)								
Lane Group Flow (vph)	0	37	228	0	7	0		
Sign Control		Free	Free		Stop			
Intersection Summary								
Area Type:	Other							
Control Type: Unsignalized								
Intersection Capacity Utiliza	ation 23.8%			IC	U Level o	of Service		
Analysis Period (min) 15								

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	7>		W	
Traffic Vol, veh/h	2	35	228	0	0	7
Future Vol, veh/h	2	35	228	0	0	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	_
Grade, %	- -	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	52	5	2	2	2
Mymt Flow	2	35	228	0	0	7
IVIVIII I IOW		00	220	U	U	
	Major1		Major2		Minor2	
Conflicting Flow All	228	0	-	0	267	228
Stage 1	-	-	-	-	228	-
Stage 2	-	-	-	-	39	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1340	-	-	-	722	811
Stage 1	-	-	-	-	810	-
Stage 2	-	-	-	-	983	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1340	-	_	_	721	811
Mov Cap-2 Maneuver	-	_	_	_	721	-
Stage 1	_	_	_	_	809	_
Stage 2	_	_	_	_	983	_
otago 2						
Approach	EB		WB		SB	
HCM Ctrl Dly, s/v	0.42		0		9.48	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBI n1
Capacity (veh/h)	ıı	97	-	VVDI	VVDIX	811
HCM Lane V/C Ratio				_	_	0.009
		0.001 7.7	-	-		9.5
HCM Ctrl Dly (s/v) HCM Lane LOS			0 A		-	
HCM 95th %tile Q(veh	.\	A 0	A	-	-	A 0
HOW SOUL WILL WIVEL	1	U	_	_		U

Appendix I


Left-Turn Lane Warrant

Waydom Drive at Site Driveway
Left-Turn Lane Warrant

Waydom Drive at Site Driveway
Left-Turn Lane Warrant

Appendix J

Traffic Control Signal Warrant

Signal Justification Calculation for Forecast Volumes (OTM Book 12 - Justification 7)

Horizon Year: Total 2035 Project number: 250591 Municipality: Ayr

North/South?: Y Major Street: Industrial Road Minor Street: Waydom Drive/Wanless Court

Warrant Results 200% Satisfied 100% Satisfied No Case 1: Signal is undoubtedly warranted

PM Forecast Only? N

Tee Intersection? N

Flow Conditions: Restricted

Number of Approach Lanes:

	100% Satisfied	INO	Case 2: Signal might be warranted	l
			Case 3: Signal warrant is unlikely	İ
				 i
t			Minor Street	
ad			Waydom Drive/Wanless Court	

			Major :	Street					Mino	or Street			
			Industria	l Road									
	Northbound Southbound							Eastbound			Peds		
Time Period	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	Crossing
AM Peak Hour	50	223	153	85	280	17	4	4	17	35	4	11	0
PM Peak Hour	45	290	52	17	224	11	21	2	62	212	1	104	0
verage Hourly Volum	24	128	51	26	126	7	6	2	20	62	1	29	0

Warrant	AHV
1A - All	481
1B - Minor	119
2A - Major	362
2B - Cross	70

Warrant 1 - Minimum Vehicular Volume

	Approach Lanes		1	2 or	Average	
	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
1A	Flow Conditions		X			Volume
	All Approaches	480	720	600	900	481
	All Approacties				% Fulfilled	66.8%

	Approach Lanes		1	2 or	Average	
	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
1B	Flow Collultions		X			Volume
	Minor Street	120	170	120	170	119
	Approaches				% Fulfilled	70.1%

Warrant 2 - Delay To Cross Traffic

2A	Approach Lanes		1	2 or	Average	
	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
	Flow Collaboris		X			Volume
	Major Street	480	720	600	900	362
	Approaches				% Fulfilled	50.2%

	Approach Lanes		1	2 or	Average	
2B	Flow Conditions	Free	Restricted	Free	Restricted	Hourly
	Flow Collditions		X			Volume
	Traffic Crossing	50	75	50	75	70
	Major Street				% Fulfilled	92.7%

Appendix K

All-Way Stop Control Warrant

All-Way Stop Control - Minimum Volume Warrant Calculation (OTM Book 5 - Local Roads)

Horizon Year: Total 2035
Region/City/Township: Ayr Major Street: Industrial Road
Minor Street: Waydom Drive/Wanless Court 3-legged Intersection? No

Time Period	Major Street Industrial Road					Minor Street Waydom Drive/Wanless Court					Hourly	Peds Crossing	Minor Street		
Tille Fellou	Northbound Southbound				d	Eastbound V				Westbound		Total	Minor	Veh. +	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Street	Peds
7:30-8:30 AM	50	223	153	85	280	17	4	4	17	35	4	11	883	0	75
2:00-3:00 PM	51	154	102	13	111	10	11	4	46	179	7	157	845	0	404
4:00-5:00 PM	45	290	52	17	224	11	21	2	62	212	1	104	1041	0	402
5:00-6:00 PM	9	323	40	11	200	2	22	1	61	103	1	49	822	0	237
Total 4-hour Volumes	155	990	347	126	815	40	58	11	186	529	13	321	3591	0	1118

Warrant Results						
200 veh/h Satisfied	Yes	Justification for all traffic entering intersection				
Minor Road 75 units/h Satisfied	No	Justification for minor road traffic (vehicles plus pedestrians)				
70/30 Volume Split Satisfied	Yes	Justification for major road to minor road traffic proportion				

Warrant	AHV
200 vehicles per hour on all approaches?	TRUE
75 vehicles + pedestrians on minor street approach?	FALSE
70/30 vehicle split on major to minor road?	TRUE

major Split 2473 1118 68.87%