

Functional Servicing and Preliminary Stormwater Management Report

1898 Whistle Bare Road Township of North Dumfries

GMBP File: 416130

December 2019

Functional Servicing and Stormwater Management Report 1898 Whistle Bare Road GMBP File: 416130 December 2019

TABLE OF CONTENTS

1.	INT	TRODUCTION	2
2.	SIT	TE INFORMATION	2
2	2.1	Existing Site Conditions	2
	2.1	.1 Natural Features	2
	2.1	.2 Topographic Conditions	3
	2.1	.3 Existing Development	3
2	2.2	Proposed Development	3
	2.2	2.1 Site Grading	3
	2.2	2.2 Roadways	3
3.	SIT	FE SERVICING	3
З	8.1	Water Supply	3
З	8.2	Sanitary Servicing	4
З	3.3	Storm Servicing	5
4.	PR	ELIMINARY STORMWATER MANAGEMENT	5
4	.1	Stormwater Management Criteria	5
4	.2	Existing Condition	6
	4.2	2.1 Existing Condition Flow Rates	7
4	.3	Allowable Release Rates	7
4	.4	Post-Development Condition	7
5.	WA	ATER BUDGET	8
6.	SE	DIMENT AND EROSION CONTROL PLAN	9
7.	MA	AINTENANCE PLAN	10
8.	со	DNCLUSIONS	10

APPENDICES

APPENDIX A: SEWAGE SYSTEMS ASSESSMENT REPORT APPENDIX B: WASTEWATER SERVICING ASSESSMENT, FLOWSPEC ENGINEERING 2019 APPENDIX C: STORMWATER MANAGEMENT ANALYSIS

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT 1898 WHISLTE BARE ROAD TOWNSHIP OF NORTH DUMFRIES DECEMBER 2019

GMBP FILE: 416130

1. INTRODUCTION

In support of the Zone Change and Site Plan Applications for the proposed development at 1898 Whistle Bare Road in the Township of North Dumfries, this Functional Servicing and Stormwater Management Report has been prepared to document the site servicing and stormwater management design requirements for the proposed development.

The Owner is required to have a Professional Engineer design a stormwater management system and have said Engineer supervise and certify that the stormwater management system was installed in accordance with the approvals given under Section 41 of the Planning Act.

The site layout was prepared by GSP Group Inc., dated April 2, 2019. A topographic survey was completed by ACI Survey Consultants Inc., dated November 3, 2017.

2. SITE INFORMATION

The 38.6-hectare site is located within the Township of North Dumfries. The site is bound by existing wetland to the north, Whistle Bare Golf Course to the east, Whistle Bare Road to the south and existing agricultural area to the west.

The intent of the Owner at this time is to develop 383 seasonal camping sites, recreational facilities, water wells and sewage treatment facility, along with the associated driving, parking and landscaped areas. Access to the site will via Whistle Bare Road.

2.1 Existing Site Conditions

2.1.1 Natural Features

A geotechnical investigation or the site was completed as part of the Sewage Systems Assessment Report (LVM, October 2014). Soils on site were found to range from peat to sand and sand and gravel deposits, however areas of silt, and silt till were also identified on site. Groundwater was found to range from 0.2m below ground surface to 1.3 m below ground surface in the north (rear) portion of the site, and 2.5 m below ground surface in the area of the existing water supply well. A copy of the Sewage Systems Assessment Report (LVM, October 2014) has been included in Appendix A. A Hydrogeological Assessment (Chung and Vander Doelen Engineering, dated November 2019) has been recently completed, which provides further details related to the soil and groundwater conditions on the site.

The site is regulated by the Grand River Conservation Authority due to the presence of a cold-water tributary of Blair Creek and associated flood plain. The Regulatory floodplain elevation across the south of the site is 298.0m.

The Environmentally Sensitive Policy Area (ESPA) limit has been identified by Natural Resource Solutions Inc. and has been illustrated on the preliminary drawings.

2.1.2 Topographic Conditions

The site slopes in a south to north direction, with a portion of the site sloping towards the south east wetland complex and a second portion of the site sloping towards Blair Creek.

The existing centreline elevation of Whistle Bare Road ranges from 311.55 m to 312.09m across the frontage of the site. Across the site, the existing ground elevation ranges from 312.75m to a low of approximately 297.13m.

2.1.3 Existing Development

Under existing conditions, the site includes two (2) residential dwellings, an 80-site seasonal campground, swimming pond, recreational facility, pavilion and restrooms.

2.2 Proposed Development

2.2.1 Site Grading

The site layout and the internal roads are shown on the Preliminary Site Grading Plan (GM BluePlan Engineering Limited Drawing No. 2). The elevation of the internal road network is controlled by the elevation of the centerline road elevations of Whistle Bare Road, elevations of existing internal roads on site, and existing elevations along the south property line and along the existing natural features.

The site has been graded to match the existing elevations along the property limits and along the boundary of the existing natural features.

2.2.2 Roadways

Existing gravel roadways will be maintained as much as is feasible. All proposed internal gravel roadways will be constructed with minimum and maximum slopes of 0.5% and 6.0% respectively. The internal gravel roadways, with a width of 3.0 to 6.0 metres (measured from edge to edge of gravel), will be constructed with roadside ditches to convey stormwater runoff.

3. SITE SERVICING

3.1 Water Supply

Water supply for the existing campground is provided by the existing private well (Tag #A070624).

The on-site private drilled well (A070624) is estimated at 6.7m below ground surface. There is a second existing private well (A219397) which is not currently used by the development. Based on the Hydrogeological Investigation completed by Chung and Vander Doelen Engineering Inc. (dated November 2019), this well was recently drilled to a depth of 30m and tested at a rate of 363 L/min with excellent recovery.

The following table depicts the available well data:

Table No. 1: Well Record Information

Well Tag No.	Depth	Recommended Pump Rate	Water Level
A070624	6 m	100 L/min	2.7 m below ground surface
A219397	30 m	363 L/min	15 m below ground surface

Based on the available data and the LVM Sewage Systems Assessment Report (2014), the campground started to record water usage rates in 2014. Typical usage from this data ranged from 3,800 L/day (0.044 L/sec) on weekdays to 8,000 L/day (0.093 L/s) on weekends for the existing 80-site layout.

The proposed seasonal campground will increase the number of campsites from 80 to 361. To provide a conservative estimate of the anticipated peak flows, we have included 400 campsites in our preliminary calculations. The anticipated water demand was calculated as follows, based on 250 L/c/day and 2.5 residents per unit:

Average Day Domestic Demand	250 L/p/d x 2.5 p/site x 400 sites = 2.89 L/sec
Peak Day Demand	2.89 L/s x 1.28 = 248 L/min = 3.70 L/sec
Peak Hour Demand	2.89 L/sec x 4.5 = 780 L/min = 13.00 L/sec

** Peaking Factors utilized are from the Region of Waterloo Water Supply Master Plan (2015)

The average day demand calculated above (2.89 L/s) is significantly higher than what would be extrapolated from the 2014 water usage data. As part of the detailed design, domestic water usage rates and demands will be further reviewed and refined.

As part of the proposed development, Well #A070624 is planned to be decommissioned and that Well #A219397 will be utilized to provide water supply for the expanded campground. As part of the detailed design, the capacity of Well #A219397 will be confirmed to identify whether the peak hourly demand can be met with one supply well, or if a secondary well will be required. In addition, the detailed design will include a review of the existing pumping equipment and recommendations for upgrades to better service the proposed development.

In general, based on the pumping test performed and the details included in the Hydrogeological Investigation Report (November 2019), the aquifer has capacity to meet the water servicing needs of this development.

Fire demand for permanent structures will be calculated during the detailed design phase of the development site. Permanent structures proposed in the north (rear) portion of the site will be protected using a stand pipe connection to the existing swimming pond. Permanent structures at the south (front) of the site will be protected through fire reservoir storage as required.

A preliminary water servicing plan (GM BluePlan Engineering Limited Drawing No. 4) has been developed to illustrate the approximate servicing alignments. Water service sizes will be confirmed as part of the detailed design.

3.2 Sanitary Servicing

Sanitary servicing for the existing 80-site campground, including existing restrooms, are provided via individual septic systems. The existing residences are also serviced via individual septic systems. Additional information regarding the current septic system servicing is provided in the Sewage Systems Assessment Report (LVM, dated October 23, 2014). A copy of the Sewage Systems Assessment Report (LVM, October 2014) has been included in Appendix A.

Sanitary servicing for the proposed seasonal campground will be provided by gravity collection and pumping via forcemain to a centralized sewage treatment facility. A portion of the proposed development, approximately 20%, is proposed to flow via gravity to the proposed on-site wastewater treatment facility. The remainder of the site is proposed to flow via gravity to three (3) individual sewage pumping stations where it will be pumped via forcemain to the proposed on-site sewage treatment facility. The preliminary sanitary servicing design, including preliminary catchments for each sewage pump station, is shown on GM BluePlan Engineering Limited Drawing No. 3. Sanitary sewer and forcemain sizes will be confirmed as part of the detailed design.

To provide a conservative estimate of the anticipated sanitary flows, we have included 400 campsites in our preliminary design. The anticipated sanitary flows for the site were calculated as follows, based on an estimated flow of 450L/site/d (FlowSpec Engineering 2019), and 2.5 persons/site (1000 person total occupancy), as well as infiltration and inflow based on 0.25 L/s/ha.

Total Average Flow		450 L/site/day x 400 sites = 2.08 L/sec
Harmon Peak Factor	$1 + \frac{14}{4 + \sqrt{P}}$	$1 + \left(\frac{14}{4 + \sqrt{1000/1000}}\right) = 3.80$
Total Peak Flow		2.08 L/sec x 3.80 = 7.90 L/sec
Total Infiltration and Inflow		0.25 L/sec/ha x 38.6 ha = 9.65 L/sec
Peak Wet Weather Flow		7.90 L/sec + 9.65 L/sec = 17.55 L/sec

The on-site sanitary pump stations will be equipped with storage volume for emergencies and will be equipped with multiple pumps in series to effectively pump flows to the on-site wastewater treatment facility. Further details will be provided during detailed design.

The centralized sewage treatment facility design is being completed by FlowSpec Engineering. The wastewater servicing assessment completed by Flowspec Engineering has been included in Appendix B and outlines the functional servicing of the proposed treatment facility.

3.3 Storm Servicing

Storm servicing for the proposed campground will be provided via roadside ditch drainage, which will be conveyed to the appropriate outlets. See details on the Preliminary Grading Plan (Drawing No. 2).

4. PRELIMINARY STORMWATER MANAGEMENT

4.1 Stormwater Management Criteria

The stormwater management criteria for this site are as follows:

- 1. Post-development flows are to be attenuated to pre-development levels.
- 2. Major storm flows are to be routed overland to an appropriate outlet.
- 3. Quality control is to be provided.

The City of Cambridge design storm parameters were used to provide the mass rainfall data routing. The 2, 5 and 100-year design storm events were analyzed to determine the impact on this site. The 2, 5 and 100-year design storm event results are appended.

The Chicago Rainfall Distribution parameters and the total depth of rainfall used for the 2, 5 and 100-year analysis are as follows:

	2-Year	5-Year	100-Year
a =	573.10	1219.80	3015.10
b =	5.00	10.50	21.00
C =	0.761	0.823	0.870
r =	0.400	0.400	0.400
Duration (minutes) =	180	180	180
Rainfall Depth (mm) =	32.356	48.647	89.669

Table No. 2: City of Cambridge Chicago Rainfall Distribution Parameters

The hydrologic model MIDUSS was used to create runoff hydrographs and to route the flows through the storage structures. The Horton infiltration method was used in the runoff calculations. The parameters used in MIDUSS are as follows:

Table No. 3: Horton Infiltration Parameters

	Impervious Areas	Pervious Areas
Maximum Infiltration	0.0 mm/hr	75.0 mm/hr
Minimum Infiltration	0.0 mm/hr	12.5 mm/hr
Lag Constant	0.0 hr	0.25 hr
Depression Storage	1.5 mm	5.0 mm

Based on the Hydrogeological Report prepared by Chung and Vander Doelen Engineering (dated November 2019), the on-site soils range from coarse sands to silty clay. In the north portion of the site, the soils are estimated to have an infiltration rate of 25mm/hr. The soils from the south portion of the site are estimated to have an infiltration rate of 100mm/hr.

4.2 Existing Condition

Under existing conditions, the 38.6-hectare site was modelled as two (2) catchments (see Figure No. 1). The existing condition MIDUSS modelling files are included in Appendix C.

Catchment 10 (38.6-hectares, 10% impervious) represents the existing condition of the site less the existing natural areas, including existing recreational facilities, residences, campsite, gravel road, and landscaped areas. Runoff generated from Catchment 10 sheetflows overland, ultimately discharging to the existing wetland complex and to Blair Creek.

Catchment 20 (10-hectares, 0% impervious) represents the existing natural areas, including the wetland complex and environmentally sensitive areas on site. Runoff generated from Catchment 20 sheetflows overland, ultimately discharging to the existing wetland complex and to Blair Creek.

4.2.1 Existing Condition Flow Rates

The existing conditions flow rates were calculated using MIDUSS software to route the hydrographs.

In summary, the existing condition flow rates for the 2-year, 5-year, and 100-year design storm events are as follows:

Table No. 4: Existing Condition Flow Rates

	2-Year	5-Year	100-Year
Catchment 10	0.820 m³/s	1.248 m ³ /s	3.171 m³/s
Catchment 20	0.073 m³/s	0.262 m ³ /s	1.075 m³/s
Total Off-Site	0.829 m³/s	1.296 m ³ /s	4.321 m³/s

4.3 Allowable Release Rates

The Township of North Dumfries requires post-development flow rates to be attenuated to existing levels. Therefore, the allowable release rates from the site under post-development conditions are as follows:

Table No. 5: Allowable Release Rates

	2-Year	5-Year	100-Year
Allowable Release Rate	0.829 m³/s	1.296 m ³ /s	4.321 m ³ /s

4.4 **Post-Development Condition**

Under post-development conditions, the site was modelled as three (3) catchments (see Figure No. 2). The postdevelopment condition MIDUSS modelling files are included in Appendix C.

Catchment 100 (7.6-hectares, 40% impervious) represents a portion of the proposed gravel drive aisles, camp sites, and landscaped areas located at the north end of the site. Runoff generated from Catchment 100 is directed to roadside ditches, ultimately discharging to the existing wetland complex and to Blair Creek.

Catchment 101 (12.6-hectares, 30% impervious) represents the existing hydro corridor, and a portion of the proposed gravel drive aisles, camp sites, and landscaped areas located at the south end of the site. Runoff generated from Catchment 101 is directed to roadside ditches, ultimately discharging to the existing wetland complex and to Blair Creek.

The subsurface soils for Catchment 101 were identified to be more suitable for infiltration than soils in the Catchment 100 area, due to the increased depth to groundwater. As such, there will be a greater emphasis on infiltration in Catchment 101 as part of the detailed design works.

Catchment 102 (8.4-hectares, 75% impervious) represents the proposed site storage area, wastewater treatment facility, overnight area, existing residences and proposed recreational hall at the south side of the site. Runoff generated from Catchment 102 is directed to the proposed gravel road and roadside ditches, ultimately discharging to the existing wetland complex and to Blair Creek.

Catchment 200 (10.0-hectares, 0% impervious) represents the existing natural areas, including the wetland complex and environmentally sensitive areas on site. Runoff generated from Catchment 20 sheetflows overland, ultimately discharging to the existing wetland complex and to Blair Creek.

Quality control for Catchments 100, 101, and 102 will be provided through directing runoff over grassed areas and ditches, where filtration and sedimentation of suspended particles may occur. Quality control in higher traffic areas such as parking lots and storage areas maybe provided by oil grit separator units prior to discharge. This will be confirmed as part of the detailed design.

The following table summarizes the unattenuated post-development flow rates from the site.

Table No. 6:	Post-Development Condition Flow Rates	5

	2-Year	5-Year	100-Year
Catchment 100	0.571 m³/s	0.824 m³/s	1.342 m³/s
Catchment 101	0.712 m ³ /s	1.040 m³/s	1.774 m³/s
Catchment 102	1.177 m³/s	1.672 m³/s	2.538 m³/s
Catchment 200	0.073 m³/s	0.262 m ³ /s	1.075 m³/s
Total Flow Rate	2.469 m³/s	3.584 m³/s	5.987 m³/s

In order to attenuate post-development flows to the existing conditions levels, approximately 4,500 m³ of volume is required to be stored on site. Of this volume, approximately 1,500 m³ will be used to balance the post-development water budget, as described in Section 5.

The proposed concept plan includes a significant length of gravel roadways for access to the individual camp sites. In order to provide sufficient drainage of these roadways, drainage ditches will be provided. Drainage ditches will incorporate infiltration features as required to achieve the water budget criteria and will also be used to provide the required runoff storage volumes. Should additional storage be required during the detailed design stage, surface ponding may also be recommended in areas of least anticipated use. The site will be configured as to limit the amount of surface ponding during the 2-year design storm even, to 0.10m (+/-). Details of the preliminary grading are shown in GM BluePlan Engineering Limited Drawing No.2.

The required infiltration volume was calculated using an annual water balance approach as described in the following section.

5. WATER BUDGET

The average annual precipitation for the area in which the study site is located is estimated to be about 916 mm. Based on the available data from the Grand River Conservation Authority Mapping, the annual recharge and runoff rates were identified as 347 mm/year and 39 mm/year, respectively. Therefore, the estimated evapotranspiration rate is as follows:

```
916mm (precipitation) – 347mm (recharge) - 39mm (runoff) = 530mm (evapotranspiration)
```

For impervious surfaces within the development, the annual evapotranspiration is estimated to be 125mm, resulting in approximately 791mm available for recharge and runoff.

Under existing conditions, the average natural groundwater recharge volume and runoff volume for the 38.6-hectare site is estimated to be 119,056 m³/year and 47,315 m³/year respectively. Under the proposed post development conditions, the average annual natural groundwater recharge volume for the 38.6-hectare site is estimated to be 87,513 m³/year, leaving a recharge deficit of approximately 31,543 m³/year to maintain the existing conditions.

A statistical analysis of the Waterloo-Wellington A rainfall station data (1991 – 2001) was completed to identify the probability of exceedance for the historical rainfall event depths. In any given year, based on this data, the probability that a rainfall event exceeds the 2-year storm depth of 32mm (City of Cambridge design storm parameters at 3-hour duration) is 2%. Therefore, rainfall events less than 32mm have a probability of 98% occurrence.

In order to be conservative in our estimate, we have assumed that 95% of the annual runoff from a given catchment is representative of storms less than or equal to the 2-year design storm event (32mm total depth).

In order to provide the required volume of recharge each year, the runoff generated from Catchment 101 during the 2-year storm events (and less) will be infiltrated. Catchment 101 produces approximately 33,340 m³/year of runoff, 95% of which is 31,673 m³, which will be infiltrated annually through the use of ditch infiltration structures as previously indicated. This additional infiltration volume satisfies the recharge deficit.

It is anticipated that Catchment 101 will produce 1,500 m³ of runoff during the 2-year design storm event. This volume will be infiltrated under all design storm events, up to and including the 100-year design storm event.

Based on the Hydrogeological Report prepared by Chung and Vander Doelen Engineering (dated November 2019), the on-site soils range from coarse sands to silty clay. In the north portion of the site, the soils are estimated to have an infiltration rate of 25mm/hr. The soils from the south portion of the site are estimated to have an infiltration rate of 100mm/hr. Given the high infiltration rate of the native soils on the south side of the site, we do not foresee difficulties meeting the water balance requirements. Additional infiltration details will be provided through the detailed design phase.

As the site and internal gravel roads are to be used seasonally, there is little risk of chloride impacts from winter maintenance practices, therefore infiltration along roadside ditches should not significantly impact the existing groundwater chemistry. The bottom of the proposed infiltration structures will at least 1m above the seasonally high groundwater table and/or bedrock.

The preliminary water budget is summarized in Appendix C. As part of the detailed design, the infiltration ditches will be modelled and a detailed water balance will be provided.

6. SEDIMENT AND EROSION CONTROL PLAN

A silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. The silt fence will serve to minimize the opportunity for water borne sediments to be washed on to the adjacent properties.

Inspection and maintenance of all silt fencing will start after installation is complete. The fence will be inspected on a weekly basis during active construction or after a rainfall event of 13 mm or greater. Maintenance will be carried out, within 48 hours, on any part of the facility found to need repair.

Once construction and landscaping has been substantially completed, the silt fence will be removed, any accumulated sediment will be removed and the landscaping will be completed.

After construction of the complete development, erosion and sediment transport will be minimal.

7. MAINTENANCE PLAN

Maintenance plans for the proposed stormwater management measures will be provided during the detailed design phase.

8. CONCLUSIONS

In summary, the features of the functional servicing and preliminary stormwater management for the proposed development at 1898 Whistle Bare Road in the Township of North Dumfries are as follows:

- 1. Water supply will be provided by the existing private domestic supply well #A219397 and additional private drilled wells as required.
- 2. Sanitary service will be provided by the collection and pumping of sewage to the on-site wastewater treatment facility.
- 3. Storm service will be provided with roadside ditch drainage to appropriate outlets.
- 4. Major storm runoff generated from the site will continue to sheetflow overland to the existing wetland complex and to Blair Creek.
- 5. Post-development flows will be attenuated to the existing conditions levels via infiltration and ponding in roadside ditches and areas of least anticipated use.
- 6. Quality control will be provided through directing storm flows over grassed areas and through ditches to provide filtration and settling of suspended particles. Quality control for higher traffic areas such as parking lots and storage areas will be provided by oil grit separators prior to discharge.
- 7. Infiltration structures are proposed along roadside ditches to assist in meeting the recharge requirements for the post-development water balance.
- 8. Prior to construction, a silt fence will be installed along the property boundary in all locations where runoff will discharge from the site to adjacent lands. This will minimize the transport of sediment off-site during the construction period.

All of which is respectfully submitted.

GM BLUEPLAN ENGINEERING LIMITED

Per:

Sarah Primmer, P. Eng. SP/rdj

\\gamsby.local\GMProjects\Kitchener\416-2016\416130 Whistle Bare Road Campground\5 Work in Progress\Reports, Manuals, Contracts\Design Report\416130 Functional Servicing and SWM Report_2019-12-17.docx

APPENDIX A: Sewage Systems Assessment Report

Englobe Corp. (LVM), October 23, 2014

Sage Campground Inc.

Sage Campground 1912/1898 Whistle Bare Road **Township of North Dumfries, Ontario**

Sewage Systems Assessment Report

Date: October 23, 2014 Ref. N°: 160-P-0000145-0-00-0400-TU-R-0001-00

LVM, a division of EnGlobe Corp.

LVM

Sage Campground Inc.

Sage Campground 1912/1898 Whistle Bare Road Township of North Dumfries, Ontario

Sewage Systems Assessment Report | 160-P-0000145-0-00-400

Prepared by:

Prepared by:

Chris Helmer, B.Sc., P.Geo. Hydrogeologist

Brad Schildroth Project Manager

Vanessa Marshall, P.Eng., M.Eng. Team Leader, Engineering Group

Reviewed by:

353 Bridge Street East, Kitchener (Ontario) Canada N2K 2Y5 - T 519.741.1313 | F 519.741.5422 - www.lvm.ca

TABLE OF CONTENTS

PRE-	APPLICATION CONSULT	ATION	
ASSE	SSMENT PROCEDURE.		
2.1 2.2 2.2.1 2.2.2 2.2.3 2.3 2.4	Field Program Monitoring Well and Mini- Monitoring Well Installation Mini Piezometer Installation Test Pit Excavation Laboratory Soil Testing	4 Piezometer Installations	
SUMN	ARIZED CONDITIONS	6	
SUMM 3.1 3.2 3.3 3.4 3.4.1 3.4.1 3.4.1 3.4.1 3.4.2 3.4.2 3.4.2 3.4.3 3.4.4 3.5 3.6	ARIZED CONDITIONS Physiography and Area G Local Subsurface Conditi Local Groundwater and S Water Chemistry Samplin Groundwater Chemistry 1 Measured Nitrate 2 Measured Total G 3 Groundwater Chemistry 1 Measured Total G 3 Groundwater Chemistry 1 Surface Water Supply Sy Sewage Effluent Chemistry Sewage Systems Physica	6 eology	
3.7 3.7.1 3.7.1. 3.7.2 3.7.2. 3.7.2. 3.7.3. 3.7.3. 3.7.3. 3.7.4. 3.7.4. 3.7.4. 3.7.4.	Sewage Systems Secondary Residence (18 <i>Local Subsurface</i> <i>Raw Sewage Ch</i> Campground Pavilion Wa <i>Local Subsurface</i> <i>Raw Sewage Ch</i> Picnic Pavilion Washroon <i>Local Subsurface</i> <i>Raw Sewage Ch</i> Campground Trailer Sites <i>Raw Sewage Ch</i> Campground Trailer Sites	11 98 Whistle Bare Road) 11 998 Whistle Bare Road) 11 998 Whistle Bare Road) 12 998 mistry 12 998 mistry 12 998 whistle Bare Road) 12 99 and Groundwater Conditions 13 91 and Groundwater Conditions 14 91 and Groundwater Conditions 14 92 and Groundwater Conditions 14 94 and Groundwater Conditions 14 95 and Groundwater Site #15, #44, #53 and #61 15 96 wage System; Site #26 15 97 and Site #11, #10, and #57 16	
	PRE-/ ASSE 2.1 2.2 2.2.1 2.2.2 2.2.3 2.3 2.4 SUMN 3.1 3.2 3.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	PRE-APPLICATION CONSULT ASSESSMENT PROCEDURE 2.1 Field Program	PRE-APPLICATION CONSULTATION 2 ASSESSMENT PROCEDURE 3 2.1 Field Program 4 2.2 Monitoring Well and Mini-Piezometer Installations 4 2.1 Monitoring Well Installation 4 2.2.1 Monitoring Well Installation 4 2.2.2 Mini Piezometer Installation 5 2.3.1 Test Pit Excavation 5 2.3 Laboratory Soil Testing 6 2.4 Groundwater Chemistry Testing 6 SUMMARIZED CONDITIONS 6 6 3.1 Physiography and Area Geology 6 3.1 Local Subsurface Conditions 7 3.4 Groundwater and Surface Water Conditions 7 3.4.1 Measured Nitrate Concentrations 8 3.4.1.1 Measured Nitrate Concentrations 8 3.4.1.2 Measured Chemistry Interpretation 8 3.4.2 Surface Water Chemistry Interpretation 9 3.4.3 Drinking Water Supply System Chemistry Interpretation 9 3.4.4 Sewage Effluent Chemistry 9 3.5 O

160-P-0000145-0-00-400-TU-R-0001-00

SAGE CAMPGROUND - SEWAGE SYSTEMS ASSESSMENT, 1912 WHISTLE BARE ROAD, TOWNSHIP OF NORTH DUMFRIES, ONTARIO

TABLE OF CONTENTS

	3.7.4.4	Local Subsurface and Groundwater Conditions	17
	3.7.4.5	5 Raw Sewage Chemistry	18
4 SEWAGE S		GE SYSTEMS ASSESSMENT	18
	4.1	Functional Assessment	18
	4.1.1	Secondary Residence (1898 Whistle Bare Road)	18
	4.1.1.1	Percolation Time	18
	4.1.1.2	2 Daily Design Sanitary Sewage Flow	18
	4.1.1.3	3 Assessment	19
	4.1.2	Campground Washroom	20
	4.1.2.1	Percolation Time	20
	4.1.2.2	2 Daily Design Sanitary Sewage Flow	21
	4.1.2.3	3 Assessment	22
	4.1.3	Picnic Pavilion Washroom	23
	4.1.3.1	Percolation Time	23
	4.1.3.2	2 Daily Design Sanitary Sewage Flow	24
	4.1.3.3	3 Assessment	24
	4.1.4	Campground Trailer Sites	26
	4.1.4.1	Percolation Time	26
	4.1.4.2	2 Daily Design Sanitary Sewage Flow	26
	4.1.4.3	3 Assessment	27
	4.2	Environmental Assessment	29
	4.2.1	Groundwater Impact	29
	4.2.2	Surface Water Impact	32
5	RECO	MMENDATIONS	32
	5.1	Secondary Residence Sewage System	32
	5.2	Picnic Pavilion and Campground Pavilion Sewage Systems	33
	5.3	Campground Trailer Sites Sewage Systems	33
	5.4	Surface Water Features	34
	5.5	Environmental Compliance Approval and Future Recommendations	34
ST	АТЕМІ	ENT OF LIMITATIONS	35
RF	FFRF	NCES	35

TABLE OF CONTENTS

Tables

Table 1: Typical Raw Domestic Sanitary Sewage Chemistry	10
Table 2: Peak Daily Sanitary Sewage Flow from the OBC (Single-Family Residence)	19
Table 3 : Peak Daily Sanitary Sewage Flow from the OBC (Campground Pavilion Washroom)	21
Table 4 : Peak Daily Sanitary Sewage Flow from the OBC (Picnic Pavilion Washroom)	24
Table 5 : Peak Daily Sanitary Sewage Flow from the OBC (Campground Area)	26

Appendices

Appendix 1	General Sewage System Operation and Maintenance		
Appendix 2	Tables		
Appendix 3	Figures		
Appendix 4	Borehole, Test Pit, and Mini Piezometer Logs		
Appendix 5	Drawings		
Appendix 6	Laboratory Certificates of Analysis		
Appendix 7	Surface Water Impact Assessment		
Appendix 8	Site Photographs		

Property and Confidentiality

"This engineering document is the property of LVM, a division of EnGlobe Corp. and, as such, is protected under Copyright Law. It can only be used for the purposes mentioned herein. Any reproduction or adaptation, whether partial or total, is strictly prohibited without having obtained LVM's and its client's prior written authorization to do so.

Test results mentioned herein are only valid for the sample(s) stated in this report.

LVM's subcontractors who may have accomplished work either on site or in laboratory are duly qualified as stated in our Quality Manual's procurement procedure. Should you require any further information, please contact your Project Manager."

Sage Campground Inc. 1912 Whistle Bare Road Cambridge, Ontario N1R 5S3 Attention: Ron and Terrie Sage

REVISION AND PUBLICATION REGISTER				
Revision N°	Date	Modification And/Or Publication Details		
0A	2014-08-19	Draft Report Issued		
0B	2014-08-29	Revised Draft Report Issued		
00	2014-10-23	Final Report Issued		

DISTRIBUTION			
2 сору	Ron and Terrie Sage, Sage Campground Inc.		
1 сору	Mr. Husein Awad, Ministry of the Environment – West Central Region		
1 сору	File		

alc

LVM

INTRODUCTION

LVM, a division of EnGlobe Corp.(LVM) is pleased to present this report that provides a functional and environmental assessment of the private on-site sewage systems that service the Sage Campground property. The location of the property is shown on Drawing 1 in Appendix 5. The property covers approximately 38.6 hectares, and is bounded by Whistle Bare Road to the south, and agricultural and forested land to the north, east, and west.

The south (front) half of the property consists of agricultural land, and contains two singlefamily residences. The north (rear) half of the property consists of mixed forested and cleared land, and contains a seasonal campground. A forested wetland is situated within a depression in the centre of the campground, from which emerges a creek that flows from the property in an easterly direction and eventually outflows into Blair Creek approximately 100 m to the east. A number of ponds have been excavated on the north half of the property, which outflow to the on-site creek via small tributaries. The general property layout is shown on the appended Drawing 2.

The campground consists of eighty seasonal trailer sites, a main washroom building with no showers or laundry facilities, and a picnic pavilion with two associated washrooms. Water is supplied to the campground by an on-site drilled well located as shown on the appended Drawing 2. Sanitary sewage servicing is provided to the trailer sites and the Campground Pavilion washroom by individual Class 4 (leaching bed) sewage systems, and to the Picnic Pavilion washroom by an individual Class 5 (holding tank) sewage system. The systems are described in further detail in sections contained within this report.

The single-family residences at front of the property are serviced by on-site water supply and sewage systems located nearby. The main residence sewage system has been previously approved; therefore, only the secondary residence at 1898 Whistle Bare Road (the Farmhouse) and the campground are included in the impact assessment portion of this report.

Mr. Kevin Noll, Senior Environmental Officer with the Ontario Ministry of the Environment (MOE) Guelph District Office conducted an inspection of the campground on September 26, 2011, and subsequently issued Onsite Sewage Disposal Site Inspection Report No. 0605-8MRJAP to Sage Campgrounds Inc. Section 5 of the MOE report mandated that Sage Campgrounds Inc. must retain the services of a qualified person to obtain a Certificate of Approval (recently rebranded by the MOE as an Environmental Compliance Approval (ECA)) that <u>acknowledges</u> all of the currently unapproved sewage systems in the campground on the property.

In support of the ECA, the qualified person would be required to conduct an engineering assessment of each sewage system in the campground, and an assessment of impact on both local groundwater and surface water. Further, should any of the sewage systems require upgrading, as a result of the engineering and impact assessments, the design details for said upgrades would need to be included in the ECA application.

The purpose of this report is to outline the procedures of the sewage systems assessment; summarize conditions of the local geology and hydrogeology; describe the components and condition of each sewage system; assess the functionality of each sewage system, and assess the impact on both local groundwater and surface water; and, make recommendations pertaining to system upgrades, if necessary, as a result of the assessment.

1 PRE-APPLICATION CONSULTATION

Pre-application consultation for this project was undertaken by LVM via an on-site meeting and email correspondence with Mr. Noll, Ms. Nadia Marenco, Hydrogeologist with the MOE West Central Region Technical Support Section, and Mr. Paul Odom, Surface Water Team Leader with the MOE West Central Region Technical Support Section, in order to discuss the proposed scope of work, within the context of the above-described inspection report. The consultation yielded the following broad requirements:

- A functional assessment would be required for a representative sample set of Class 4 sewage systems. The attendees of the meeting agreed to eight systems for assessment. Further, since the systems are located near a wetland and tributary of Blair Creek, an assessment of impact to groundwater and surface water would also be required.
- A functional assessment would be required for all of the Class 5 sewage systems. Given there is no discharge to the on-site environment from these systems, an assessment of impact to groundwater and surface water would not be required.
- The groundwater and surface water impact assessment must comply with the requirements of the following MOE documents where applicable;
 - Design Guidelines for Sewage Works, 2008 (DGSW);
 - <u>Guideline B-7: Incorporation of the Reasonable Use Concept into MOEE Groundwater</u> <u>Management Activities;</u> and;
 - <u>Guideline B-1: Water Management Policies, Guidelines, Provincial Water Quality</u> <u>Objectives of the Ministry of the Environment, 19</u>94 (PWQO)
- The surface water impact assessment must apply to the on-site tributary of Blair Creek toward which shallow groundwater is presumed to flow from the Class 4 sewage systems.
- The surface water impact assessment must apply a mass balance approach, based on shallow groundwater flow and chemistry test results gathered by LVM, and flow and chemistry test results from the selected surface water body.

2 ASSESSMENT PROCEDURE

The methodology for the assessment included the following tasks:

- review topographic, geological, and hydrogeological mapping and reports for the area, including previous reports by LVM;
- ▶ install eight monitoring wells for groundwater level measurement and chemistry testing;
- install four mini-piezometers for groundwater level measurement adjacent to surface water bodies;
- measure shallow groundwater elevations in the monitoring wells and mini-piezometers, in order to delineate horizontal shallow groundwater flow direction and determine groundwater recharge/discharge conditions;
- collect shallow groundwater samples from the monitoring wells for chemical analysis of nutrient and bacterial parameters;
- collect water supply well samples for chemical analysis of nutrient and bacterial parameters;
- measure the flow rate of the Blair Creek tributary at its exit from the subject property (east property boundary);
- collect surface water samples from the Blair Creek tributary at its exit from the subject property (east property boundary) for chemical analysis of nutrient and bacterial parameters;
- physically analyze, via exploratory excavation, one class 4 sewage system that services the secondary residence, one Class 4 sewage system that services the Campground Pavilion washroom building, one Class 5 sewage systems that services the Picnic Pavilion washroom building and eight representative Class 4 sewage systems that service the trailer sites;
- assess the functionality and environmental integrity of the Class 4 sewage systems based on the representative analyses, and provide recommendations, as necessary; and,
- assess the functionality of the Class 5 sewage system, and provide recommendations, as necessary.

2.1 FIELD PROGRAM

The field program involved the advancement of eight boreholes to depths ranging from 3.8 to 5.8 m on April 24 and 25, 2012, and four mini piezometers were installed in proximity to ponds and creeks on April 26, 2012. Additionally, the excavation of eleven test pits throughout the sewage system evaluation areas were conducted on April 30, 2013. The boreholes were advanced by Geo-Environmental Drilling Inc. under the full-time observation of a technician from LVM using a CME-75 track-mounted drillrig equipped with continuous flight hollow stem augers to identify the subsurface soil and groundwater conditions. The mini-piezometers were installed by an LVM field technician and the test pits were completed using a small tractor backhoe under the full-time observation of a technician from LVM to identify subsurface soil and groundwater conditions, are shown on the appended Drawing 2.

Soil samples were recovered from the boreholes at regular 0.75 and 1.50 m depth intervals using a 50 mm diameter split-spoon sampler in accordance with the Standard Penetration Test (SPT) procedure (ASTM D1586). Soil samples obtained from the boreholes were submitted for moisture content analysis, with selected samples submitted for particle size distribution analysis. The laboratory results for moisture content are presented on the borehole logs in Appendix 4, and the particle size distribution analyses are shown on Figure 1 in Appendix 3.

The borehole and mini-piezometer locations and ground surface elevations were surveyed by LVM with geodetic references provided by ACI Survey Consultants Inc. The monitoring wells were located relative to existing site features, and the ground surface elevations are referred to the following temporary benchmark:

TBM: Cut cross in concrete near southwest corner of washroom building

Elevation: 344.37 m (geodetic) .

2.2 MONITORING WELL AND MINI-PIEZOMETER INSTALLATIONS

2.2.1 Monitoring Well Installation

During the borehole drilling program, monitoring wells were installed in the boreholes for measurement of groundwater levels.

The 50 mm diameter monitoring wells were constructed by inserting slotted, Schedule 40 PVC well screen and riser pipe into the open auger holes. Sand was added in order to place a filter pack around the screen, until the level of the sand was approximately 300 mm above the top of the screen. Bentonite seals were then placed above the sand pack/pre-packed screens to prevent the infiltration of surface water. The tops of all the well riser pipes were vented to allow accurate measurement of stabilized groundwater levels, and protective steel casings with lockable covers were concreted in place to house each of the monitoring wells. Details of the monitoring well installations and soil and groundwater conditions encountered are provided on the borehole logs included in Appendix 4.

In Boreholes BH-3-12 and BH-8-12 upper (-U) and lower (-L) monitoring wells were installed in separate stratigraphic units, with the shallower monitoring well constructed using 19 mm PVC tubing with fabricated screens and vented riser pipe to allow accurate water level measurement.

All of the monitoring wells were constructed in accordance with Ontario Regulation 903 (amended by O.Reg. 468/10) as administered by the Ontario Ministry of the Environment (MOE). A well record was submitted to the MOE based on the cluster system whereby one well record can be submitted on behalf of an entire property. Provincial Site Cluster Tag Identification Number A115242 was placed on the monitoring well at Borehole BH-8-12.

Borehole logs are included in Appendix 4 for reference

2.2.2 Mini Piezometer Installation

A total of four mini-piezometers were installed adjacent to on-site ponds and tributary creeks, using a hand auger to advance each hole to between 0.91 and 4.88 m. The mini-piezometers were constructed using 19 mm diameter PVC pipe with fabricated screens 0.61 to 1.52 m in length.

Mini piezometer logs are included in Appendix 4 for reference.

2.2.3 Test Pit Excavation

A series of test pits were excavated on the property in the vicinity of the existing building areas (secondary residence, campground and picnic pavilion washrooms, and the campground residential area) which are serviced by existing sewage systems. Eleven representative test pit locations were selected to identify local soil conditions and evaluate and assess the sewage system components and related capacity. The test pits were backfilled immediately after completion of sampling and observation.

2.3 LABORATORY SOIL TESTING

All soil samples secured during this investigation were returned to the LVM laboratory for moisture content testing, the results of which are plotted on the appended borehole logs. Some samples were collected and submitted for particle size distribution analysis.

2.4 GROUNDWATER CHEMISTRY TESTING

Between April and August 2012 water chemistry samples were obtained from on-site monitoring wells and the campground supply well and analyzed for a variety of general chemistry parameters. A summary of the groundwater chemistry analysis results is included in the appended Table 102, and the laboratory Certificates of Analysis are included in Appendix 6 for reference. Additionally, between April and September 2012 water chemistry samples were obtained from the tributary creek at the downstream property boundary and analyzed for general chemistry parameters. A summary of the groundwater chemistry analysis results is included in the appended Table 103, and the laboratory Certificates of Analysis are included in Appendix 6 for reference.

The park owners have collected water chemistry samples from the pumphouse and distribution sites between April 2012 and July 2013 and submitted them for analysis of selected parameters. A summary of the drinking water supply chemistry analysis results is included in the appended Table 104, and the laboratory Certificates of Analysis are included in Appendix 6 for reference.

3 SUMMARIZED CONDITIONS

3.1 PHYSIOGRAPHY AND AREA GEOLOGY

The site is located within the Guelph Drumlin Field Physiographic Region, and within a Spillways Physiographic Landform (Chapman and Putnam, 1984). According to the Ministry of Northern Development and Mines Quaternary Geology map of the Cambridge Area (Karrow, 1987), the southern portion of the site is located within an area of outwash gravel deposits, while the northern portion of the site is located within an area of lacustrine and outwash sand deposits. An illustration showing the Quaternary Geology of the site is provided on Drawing 3, in Appendix 5.

Underlying glacial deposits in the area is the massive and thick bedded Guelph Formation dolostone.

3.2 LOCAL SUBSURFACE CONDITIONS

We refer to the appended borehole, mini piezometer and test pit logs for soil descriptions and stratigraphies, results of SPT testing, moisture content profiles, pocket penetrometer test results, details of monitoring well construction, and groundwater measurements and observations

The borehole, mini piezometer and test pit logs show that the subsurface soil stratigraphy generally consists of organic (peat/topsoil) deposits of varying thickness overlying sand and/or sand and gravel deposits. Borehole BH-08-12, located on the east side of the tributary creek, encountered deposits of silt, silt till, and silt/sand to its termination depth.

3.3 LOCAL GROUNDWATER AND SURFACE WATER CONDITIONS

Groundwater levels were measured in the on-site monitoring wells on April 27, July 3, and August 8, 2012 with measurements summarized in the appended Table 101.

Groundwater beneath the site occurs in the extensive near surface sandy/granular deposits; and as shown on the appended Drawing 2, groundwater flows generally northeastwards towards Blair Creek with localized influence along the tributary creek and pond outlet.

The numerous ponds on site are groundwater fed (ponds are supported by groundwater discharge, and generally represent the shallow groundwater table), and outlet to the tributary creek which flows to Blair Creek.

3.4 WATER CHEMISTRY SAMPLING AND ANALYSIS

The following subsections discuss water chemistry sampling results from the various locations on the property. All Laboratory Certificates of Analysis are included in Appendix 6 for reference.

3.4.1 Groundwater Chemistry

Groundwater samples were obtained from the eight monitoring wells on site on April 27, July 3, and August 8, 2012 and submitted to ALS Environmental in Waterloo, Ontario for analysis of a variety of parameters. As shown on the appended Table 102, the measured concentrations of Nitrate varied widely across the property but did not exceed the Ontario Drinking Water Standards (ODWS) criteria limits. The measured Nitrate concentration exhibited a slight increasing trend at all monitoring wells apart from Borehole BH-5-12 and BH-6-12.

No E. coli was detected in any of the groundwater chemistry samples; however, the measured concentrations of Total Coliforms exceeded the ODWS criteria limit at all monitoring wells on each sample date.

3.4.1.1 Measured Nitrate Concentrations

Boreholes BH-1-12 and BH-2-12 are located upgradient of all sewage leaching beds within the campground; however, measured Nitrate concentrations increased at both locations between April and August, 2012. Furthermore, Borehole BH-02-12 (located at the western property boundary and upgradient of all leaching beds) exhibits the highest measured Nitrate concentrations for each of the three monitoring events.

In contrast, Boreholes BH-3-12 and BH-4-12 are located downgradient of leaching beds; however, measured nitrate concentrations at both locations were consistently lower than the measured Nitrate concentration at BH-2-12.

Boreholes BH-6-12 and BH-7-12 (located at the northern/northeastern edge of the property) are at the downgradient ends of the campground; however, measured Nitrate concentrations at these locations are generally the lowest measured concentrations on site.

3.4.1.2 *Measured Total Coliforms Concentrations*

Concentrations of Total Coliforms exhibit similar trends to measured Nitrate concentrations, with upgradient monitoring wells (Boreholes BH-1-12 and BH-2-12) exhibiting the highest concentrations of Total Coliforms, and downgradient Boreholes BH-3-12 and BH-4-12 exhibiting the lowest measured concentrations.

3.4.1.3 Groundwater Chemistry Interpretation

The groundwater chemistry data collected during the dry summer of 2012 helps to highlight the chemistry trends across the property, as dilution via precipitation was minimal.

It is apparent that concentrations of sensitive parameters such as Nitrate and Total Coliforms are not increasing downgradient of the campground leaching beds, but are in fact generally decreasing from the upgradient end of the property to the downgradient end. This suggests external (upgradient) influences on groundwater chemistry that are not exacerbated by the onsite leaching beds. Furthermore, the decreasing concentrations suggest that natural attenuation processes are in effect in the subsurface soils and groundwater.

An alternate source of nutrients and Total Coliforms in groundwater could be the numerous agricultural fields to the west and south of the campground property. Regular application of chemical fertilizer and manure would be expected on active agricultural fields, and as the groundwater flow direction is generally northwards/westwards on the campground property, the fields are interpreted to be generally upgradient.

3.4.2 Surface Water Chemistry

Surface water samples were obtained from the tributary creek at the downstream property boundary (as shown on the appended Drawing 2) on April 27, June 3, and September 5, 2012 and submitted to ALS Environmental in Waterloo, Ontario for analysis of a variety of parameters. As shown on the appended Table 103, the measured concentration Total Coliforms exhibited an increasing trend during the year, while the concentrations of Nitrate, Total Suspended Solids, and E. coli peaked in August and declined slightly in September.

The measured concentration of E. coli exceeded the Provincial Water Quality Objectives (PWQO) criteria limit in July, August, and September.

3.4.2.1 Surface Water Chemistry Interpretation

The presence of Total Coliforms in surface water, and the increase in concentration during the year, is not unusual given the large ponds and wetland areas in proximity to the tributary creek. The relatively low measured temperature in the creek during a low precipitation summer reinforces the conclusion that groundwater discharge is the primary contributor to creek flow.

The groundwater contour map on the appended Drawing 2 indicates localized convergence of shallow groundwater flow towards the tributary creek; however, the majority of the campground site where leaching beds are located is more than 50 m from the creek, and beyond the influence of the creek as a discharge location. Additionally, it is noted that no groundwater chemistry samples has measured concentrations of E. coli. Therefore, the presence of Nitrate, Total Coliforms, and E. coli in surface water do not appear to be directly related to the leaching beds on the Sage Campground property.

As discussed previously in Section 3.4.1.3, the agricultural fields to the south and west of the campground may be influencing groundwater chemistry. Impacted groundwater discharging to the two ponds at the southern end of the campground property, and contribution of nutrients and bacteria from the wetland through which the tributary creek flows, are interpreted to be more significant sources of surface water contamination.

3.4.3 Drinking Water Supply System Chemistry

Water samples were obtained from the drinking water supply pumphouse (upstream of any treatment systems) by LVM employees on April 27, July 3, and August 28, 2012 and submitted to ALS Environmental in Waterloo, Ontario for analysis of a variety of parameters. Additionally, on April 29, May 27, and July 5, 2013 water chemistry samples from selected distribution locations and the supply pumphouse were obtained by Sage Campground employees and submitted to ALS Environmental in Waterloo, Ontario for analysis of a variety of parameters. As shown on the appended Table 104, measured Nitrate concentrations were elevated in 2012 but remained below the ODWS criteria limit. The sample from May, 2013 had a lower Nitrate concentration than the three samples from 2012.

In April, 2012 and May, 2013 the presence of Total Coliforms was measured in the raw water (pre-treatment); however, these occurrences appear to be isolated in nature.

As shown on the appended Drawing 2, the campground water supply well is at the southwestern edge of the campground property, and is upgradient of the campground itself. Therefore, the water quality issues noted above are not interpreted to be a result of the leaching beds located within the campground.

3.4.4 Sewage Effluent Chemistry

Sewage sampling was not conducted on this property and specific sewage chemistry results were not obtained. Alternatively, it was considered reasonable that the chemistry of raw sewage that discharges to the sewage systems is presumed to be consistent with typical domestic sewage with respect to oil and grease, BOD₅, TSS, and total nitrogen, due to the nature of the property occupancy without the use of park laundry facilities or restaurant kitchen operations.

Typical raw domestic sewage exhibits the following relevant chemistry:

Table 1: Typical Raw Domestic Sanitary Sewage Chemistry

PARAMETER	CONCENTRATION
Total Suspended Solids (TSS)	220 mg/L
Biochemical Oxygen Demand, 5-day, 20 degrees C (BOD ₅)	200 to 250 mg/L
Total Nitrogen	40 mg/L
рН	6.0 to 8.0

3.5 ON-SITE WATER SUPPLY WELLS

The well at 1898 Whistle Bare Road is approximately 0.9 m in diameter with a steel case. The well is approximately 6 m deep, and was installed in the early 1900's to supply the original farmhouse. This well is not currently used, as the farmhouse is not currently occupied; however, the house has previously been used as a rental property and may be rented in the future.

The well at 1912 Whistle Bare (MOE Well Tag #A003434) is a 0.16 m diameter steel-cased well drilled to 18.6 mBGS. The well supplies the residential dwelling on the property.

The Campground Well (A070624) is a 0.16 m diameter steel-cased well drilled to 6.7 mBGS. The well supplies the eighty campground sites on the property via a private water distribution system.

3.6 SEWAGE SYSTEMS PHYSICAL ANALYSIS

A representative sample of sewage systems underwent physical analysis, including selective pumping of tanks, exploratory excavation of selected leaching beds, test hole advancement, and soil particle size distribution analysis at the LVM laboratory, in order to ascertain the following information:

- sequence, size, material, and layout of all tanks and leaching beds;
- functional condition of each of the components;
- subsurface soil and groundwater conditions in the vicinity of the leaching beds; and,
- percolation times of the predominant soils underlying the leaching beds.

LVM staff were present for monitoring of the exploratory excavation of the leaching beds, and test pit excavation, in order to record measurements and observations. The test pit locations are shown on the appended Drawing 2, and the test pit logs are provided in Appendix 4 for reference.

3.7 SEWAGE SYSTEMS

The following subsections set forth descriptions of the eleven sewage systems including the secondary single family residence, the campground pavilion washroom, the picnic pavilion washroom and eight campground trailer sites under current use that underwent physical analysis. The main residence/campground office sewage system is already described in the current C of A and not included as part of this assessment. The following includes summaries of the sequence, size, material, configuration, and condition of all encountered components plus the local soil and groundwater conditions. The physical analysis was conducted on April 30 and May 1, 2013. Photographs taken during the physical analysis are provided in Appendix 8.

3.7.1 Secondary Residence (1898 Whistle Bare Road)

The single-family residence is located at the south end on the upper section of the property directly adjacent to Whistle Bare Road. The residence is serviced by a sewage system that consists of a septic tank and in-ground absorption trench leaching bed. The leaching bed is situated within a grassed yard area.

The septic tank is approximately a 1,000 L round single-chambered concrete tank containing heavy wooden boards forming a dividing partition wall within the interior compartment and is equipped with the original concrete inlet and outlet baffles. No effluent filter was observed in the septic tank. The edge of the tank is located 0.4 m from the foundation of the residence and the top of the tank is buried to a depth of approximately 0.2 m and equipped with a single 1.1 m diameter concrete lid that is accessible at grade. The tank was observed to be in reasonably good condition at the time of the analysis.

A 100 mm diameter sewer (reportedly black asbestos type) extends from the septic tank to a common header that provides effluent distribution to the leaching bed.

The leaching bed consists of four runs of 75 mm diameter clay distribution tile spaced at either 2.44 m or 3.66 m, on centre, ranging in length from 11.0 to 11.5 m (estimated total length of 45 m). The clay tiles were buried to an approximate depth of 0.3 m to the top of the pipe and the distribution runs were constructed in a thin layer of gravel surrounding the tiles. No filter cloth was observed over the gravel/tile trench. At the time of the analysis, the stone layer in the exposed trenches was moderately contaminated with soil and dry biomat accumulation was minimal to moderate. No effluent was observed flowing inside or outside the pipe at the time of the analysis. The exposed distribution tiles were observed to be in good to fair condition (both interior and exterior) at the time of the analysis, with dry sludge accumulation ranging from half to partially full (50 to 75 % capacity). No effluent emission to the ground surface was evident at any time during the physical analysis.

3.7.1.1 Local Subsurface and Groundwater Conditions

Please refer to the appended log of the test pit (Test Pit TP-11-13) situated in the vicinity of the secondary single-family residence sewage system for soil descriptions and stratigraphies, and groundwater observations. The subsurface stratigraphy contacted in the area of the sewage system comprises surficial topsoil overlying an extensive deposit of sand and gravel.

A sample of sand and gravel recovered during the subsurface investigation was submitted to the LVM laboratory for particle size distribution analysis. The results of the analysis are shown on Figure 1 presented in Appendix 3, and indicate that the sand and gravel sample contains 37% gravel, 58% sand, and 5% silt.

At the time of the analysis, no shallow groundwater was encountered in Test Pit TP-11-13 within the sand and gravel deposit, and only damp to moist moisture conditions were observed within the soils.

3.7.1.2 Raw Sewage Chemistry

The chemistry of raw sewage that discharges to the sewage system is presumed to be consistent with typical domestic sewage with respect to oil and grease, BOD₅, TSS, and total nitrogen, as described in Section 3.4.4.

3.7.2 Campground Pavilion Washroom

The washroom building is located in the lower section on the northwest side of the property along an access road servicing the park and situated near the most northern pond on the property. The washroom building is serviced by a sewage system that consists of a septic tank and an inground absorption trench leaching bed. The leaching bed is situated within a grassed recreational area.

The septic tank is an approximately 1,893 L (Infiltrator model, 500 Series), single-chambered plastic tank installed near the entrance of the building. The tank was observed to be in excellent condition at the time of the analysis given the tank is relatively new and is less than five years old. The tank is equipped with a sealed single lid that is accessible at grade and buried just below the ground surface with a 0.1 m layer of soil coverage above. The inlet and outlet baffles were not inspected at the time of the inspection.

A solid 100 mm diameter PVC sewer extends 0.3 m from the plastic tank and splits into two runs that provide effluent distribution to the leaching bed via 100 mm diameter PVC perforated pipes. The distribution pipes are each 3.05 m in length with an estimated total length of 6.0 m and spaced at approximately 0.4 m on centre. The exposed distribution pipes are bedded on a layer of coarse stone and concrete debris stone with a thickness of approximately 0.3 to 0.5 m. The pipe was buried to an approximate depth of 0.4 m to the top of the pipe and the distribution runs were not capped but covered with filter fabric to prevent soil intrusion. The exposed distribution pipes were observed to be in excellent condition (both interior and exterior) at the time of the analysis, with no effluent or sludge accumulation observed.

3.7.2.1 Local Subsurface and Groundwater Conditions

Please refer to the appended log of Test Pit TP-4-13 situated in the vicinity of the campground washroom sewage system for soil descriptions and stratigraphies, and groundwater observations. In general, the subsurface stratigraphy contacted in the area of the sewage system comprises a surficial layer of topsoil, overlying a layer of silt/sand and underlain by an extensive deposit of sand, some gravel.

A sample of sand, some gravel recovered during the subsurface investigation was submitted to the LVM laboratory for particle size distribution analysis. The results of the analysis are shown on Figure 1 presented in Appendix 3, and indicate that the sand, some sample contains 12% gravel, 86% sand, and 2% silt.

At the time of the analysis, shallow groundwater was encountered in Test Pit TP-4-13 within the sand deposit at a depth of 1.2 m.

The groundwater contours depicted on the appended Drawing 2 indicate a northwards flow direction in the vicinity of the campground washroom.

3.7.2.2 Raw Sewage Chemistry

The chemistry of raw sewage that discharges to the sewage system is presumed to be consistent with typical domestic sewage with respect to oil and grease, BOD₅, TSS, and total nitrogen, as described in Section 3.4.4.

3.7.3 Picnic Pavilion Washroom

The washroom building is located in the lower section on the northeast side of the property along a maintenance road servicing the park and situated near the north trailer storage area on the property. The washrooms at the picnic pavilion are serviced by a holding tank sewage system which does not contain a constructed leaching bed. A 1,893 L (Infiltrator model, 500 series) single-chambered plastic tank is installed behind the washroom building. The tank was observed to be in excellent condition at the time of the analysis given the tank is relatively new and is less than five years old. The tank is equipped with a sealed single lid that is accessible at grade and buried just below the ground surface with a 0.2 m layer of soil coverage above. The inlet and outlet baffles were not inspected at the time of the inspection.

3.7.3.1 Local Subsurface and Groundwater Conditions

Please refer to the appended log of the test pit (Test Pit TP-10-13) situated in the vicinity of the picnic pavilion washroom sewage system for soil descriptions and stratigraphies, and groundwater observations. The subsurface stratigraphy contacted in the area of the sewage system comprises surficial topsoil, overlying silt/sand and underlain by an extensive deposit of sand.

A sample of sand, some gravel recovered during the subsurface investigation was submitted to the LVM laboratory for particle size distribution analysis. The results of the analysis are shown on Figure 1 presented in Appendix 3, and indicate that the sand, some gravel sample contains 10% gravel, 89% sand, and 1% silt.

At the time of the analysis, no shallow groundwater was encountered in Test Pit TP-10-13 in the sand deposit, and only damp to moist moisture conditions were observed within the soils.

The groundwater contours on the appended Drawing 2 indicate flow in a north-eastwards direction, following the tributary creek.

3.7.3.2 Raw Sewage Chemistry

The chemistry of raw sewage that discharges to the sewage system is presumed to be consistent with typical domestic sewage with respect to oil and grease, BOD₅, TSS, and total nitrogen, as described in Section 3.4.4.

3.7.4 Campground Trailer Sites

The residential campground area is located on the lower section of the property occupying the northwest corner of the site. The park contains a total of 80 trailer sites which are accessible by multiple access roads similar to that of a subdivision. A typical trailer site comprises a small parcel of land suitable for a semi-permanent dwelling, parking for a vehicle in the driveway and some trees adjacent to the limits of the space. Each site contains a private water service and independent sewage system.

A representative sample of campground trailer sites were assessed across the property and evaluated. The sewage systems typically fall into three categories based on construction methods used for installation of the systems. Those groups of systems have been categorized by age and are referred to as "1st Generation", "2nd Generation", and "3rd Generation" sewage systems which are described in detail below.

3.7.4.1 1st Generation Sewage Systems; Site #15, #44, #53 and #61

The following is a summary of the generalized conditions of the sewage systems found at the above noted sites.

The septic tank configuration at these sites consist of two single-chambered plastic barrels/drums which have a volume of approximately 200 L each, which are connected in series to each other at a point 0.4 m approximately below grade allowing effluent to flow from one tank to another. The tank contains a 100 mm PVC fitting inserted on the top of the first tank and located above the ground surface which acts as the inlet and connection point to the trailer sewer. On two sites, an additional 100 mm PVC fitting, similar to the inlet is located on the secondary tank compartment and is used for pump outs and monitoring the capacity of the system. The tanks are buried to a depth of approximately 0.2 m and are not equipped with inlet or outlet baffles, or outlet effluent filters. The tanks also do not have the capability of attaching risers or functional lids that would be accessible at grade. The tanks were observed to be in good condition with no deterioration of the material or signs of collapsing at the time of the analysis; however, it was noted that that the tanks were positioned slightly off-axis, which may be attributed to the backfilling procedures.

A single 0.3 m to 1.2 m length of 100 mm diameter plastic corrugated and perforated "big O" pipe was observed to exit the secondary compartment of the septic tank configuration. The section of pipe was approximately 0.6 below grade which permitted storage in the tank to allow sewage and solids to settle and remain in the tank while effluent could escape. The purpose of the section of pipe was to distribute the effluent to the surrounding soils after the tanks reached their capacity. The pipe was constructed over area approximately 0.9 wide by 0.9 m long by 0.6 m deep, that had been excavated and loosely backfilled with concrete debris, bricks and, and large stones to provide a soak away zone. The section of pipe did not appear to exhibit significant sludge accumulation at the time of the analysis.

3.7.4.2 2nd Generation Sewage System; Site #26

The following is a summary of the generalized conditions of the sewage systems found at the above noted site.

The septic tank configuration at this site consists of two single-chambered plastic barrels/drums which have a volume of approximately 200 L each, which are connected in series to each other at a point 0.4 m approximately below grade allowing effluent to flow from one tank to another. The tank contains a 100 mm PVC fitting inserted on the top of the first tank and located above the ground surface which acts as the inlet and connection point to the trailer sewer. An additional 100 mm PVC fitting, similar to the inlet located on the secondary tank compartment and is used for pump outs and monitoring the capacity of the system was not constructed. The tanks are buried to a depth of approximately 0.2 m and are not equipped with inlet or outlet baffles, or outlet effluent filters. The tanks also do not have the capability of attaching risers or functional lids that would be accessible at grade. The tanks were observed to be in good condition with no deterioration of the material or signs of collapsing at the time of the analysis, however, it was noted that that the tanks were positioned slightly off-axis, which may be attributed to the backfilling procedures.

The leaching bed comprises a single 0.9 m length of 75 mm diameter perforated ABS pipe and was observed to exit the secondary compartment of the septic tank configuration. The section of pipe was approximately 0.4 below grade which permitted storage in the tank to allow sewage and solids to settle and remain in the tank while effluent could escape. The purpose of the section of pipe was to distribute the effluent to the surrounding soils after the tanks reached their capacity. The pipe was constructed over area approximately 0.6 wide by 1.5 m long by 0.9 m deep, that had been excavated and loosely backfilled with concrete debris, bricks and, and large stones to provide a soak away zone. The infiltration area containing the section of pipe was covered with a similar size piece of discarded tin roof sheeting to prevent soil intrusion. The section of pipe did not appear to exhibit significant sludge accumulation at the time of the analysis.

3.7.4.3 3rd Generation Sewage System; Site #1, #19, and #57

The following is a summary of the generalized conditions of the sewage systems found at the above noted sites.

The septic tank configuration at these sites consist of three single-chambered plastic barrels/drums which have an volume of approximately 200 L each, which are connected in series to each other at a point 0.4 to 0.6 m approximately below grade allowing effluent to flow from one tank to another. The tank contains two 100 mm PVC fittings inserted on the top of the first tank and located above the ground surface which acts as a separate inlet for connection to the trailer sewer as well as a port for convenient pump outs.

An additional single 100 mm PVC fitting, similar to the inlet is located on the second and third tank compartments and are used for pump outs and monitoring the capacity of the system. The tanks are buried to a depth of approximately 0.2 m and are not equipped with inlet or outlet baffles, or outlet effluent filters. The tanks also do not have the capability of attaching risers or functional lids that would be accessible at grade. The tanks were observed to be in good condition with no deterioration of the material or signs of collapsing at the time of the analysis, however, it was noted that that the tanks were positioned slightly off-axis, which may be attributed to the backfilling procedures.

The leaching bed comprised two, 2.44 m (Sites 1 and 19) or two, 3.05 m (Site 57) lengths of 100 mm diameter perforated PVC pipe that were observed to exit the third tank compartment of the septic tank configuration. The pipes were situated 0.6 m apart on centre and they were approximately 0.6 below grade which permitted storage in the tanks to allow sewage and solids to settle and remain in the tank while effluent could escape. The purpose of the sections of pipe was to distribute the effluent to the surrounding soils after the tanks reached their capacity. The pipes were constructed over area approximately 0.6 wide by 3.0 m long by 0.9 m deep, that had been excavated and loosely backfilled with concrete debris, bricks and large stones. A layer of 0.1 m of 50 to 100 mm river stone was overlain to provide protection to the pipe and a piece of filter fabric was installed directly over the stone and pipe to prevent soil infiltration in the underlying infiltration area. The section of pipe did not appear to exhibit significant sludge accumulation at the time of the analysis.

3.7.4.4 Local Subsurface and Groundwater Conditions

Please refer to the appended test pit logs for soil descriptions and stratigraphies, moisture content profiles, and groundwater measurements and observations of locations situated in the vicinity of independent sewage systems servicing the campground trailer sites. In general, the subsurface stratigraphy contacted in the area of the campground trailer sites sewage systems comprises a surficial layer of topsoil or fill, overlying a layer of silt/sand and underlain by extensive deposits of sand, with varying amounts of silt and gravel.

Samples of sand recovered in those areas during the subsurface investigation were submitted to the LVM laboratory for particle size distribution analysis. The results of the analysis are shown on Figures 2 and 3 presented in Appendix 3, and indicate that the samples contain 1 to 10% gravel, 89 to 95% sand, and 2 to 10% silt.

Shallow groundwater exists in the vicinity of the trailer site sewage systems and generally occurs within the sand deposit. The varying depths to shallow groundwater at the nearby test pit locations are between 0.9 and 1.4 m below grade with the exception of Test Pit TP-8-13 where groundwater was found to occur at 1.7 m below grade and at Test Pit TP-9-13, where no groundwater was encountered during excavation.

3.7.4.5 Raw Sewage Chemistry

The chemistry of raw sewage that discharges to the sewage system is presumed to be consistent with typical domestic sewage, with respect to oil and grease, BOD₅, TSS, and total nitrogen, as described in Section 3.4.4.

4 SEWAGE SYSTEMS ASSESSMENT

4.1 FUNCTIONAL ASSESSMENT

This subsection provides a functional assessment of the sewage system types under current use, based upon the following parameters:

- percolation time of the predominant soil(s) underlying each sewage system leaching bed;
- daily design (peak) sanitary sewage flow for each sewage system; and,
- physical condition of each sewage system (described in Subsection 3.3).

4.1.1 Secondary Residence (1898 Whistle Bare Road)

4.1.1.1 Percolation Time

The subsurface soil stratigraphy in the vicinity of the secondary single-family residence sewage system consists of topsoil overlying sand and gravel to a depth of 1.8 m. The leaching bed absorption trenches are founded within the sand and gravel deposit, therefore, for the purpose of the functional assessment, a percolation time was assessed using the sand and gravel deposit.

The percolation time of the sand and gravel was assessed based on physical characteristics encountered during the subsurface investigation (i.e. structure, density, organics, etc.); and, soil type as described by the Unified Soil Classification System in Supplementary Standard SB-6 of the OBC, "Percolation Time and Soil Descriptions", and determined by the laboratory test results (Figure 1). The sand and gravel is classified as "GW - SW", for which the OBC specifies a percolation time in the range of <1 (less than 1) to 12 min/cm. A percolation time of T = 2 min/cm was selected for the functional assessment.

4.1.1.2 Daily Design Sanitary Sewage Flow

The theoretical peak daily sanitary sewage flow for the residence was calculated, as follows, from Table 8.2.1.3.A. of the OBC, based on occupancy information supplied to LVM by the property owner:

Table 2:	Peak Dail	y Sanitary	Sewage Flow	from the OBC	(Single-Family	(Residence)
		, ,	J		` J J	, ,

	DESCRIPTION	DESIGN FLOW
А	3 bedrooms (up to 5)	1,600 L/day
В	0 bedrooms (over 5)	0 L/day
С	130 m ² approximate total finished area (excluding the basement)	0 L/day
D	17 plumbing fixture units from Table 7.4.9.3. of the OBC	0 L/day
	Total = A + (greater of B, C, and D)	1,600 L/day

Therefore, a theoretical peak daily sanitary sewage flow of 1,600 L/day was used for the functional assessment.

4.1.1.3 Assessment

The single-family residence is serviced by a sewage system that consists of a septic tank and in-ground absorption trench leaching bed. The septic tank effective volume is 1,000 L (single-chambered tank with no effluent filter), and the total distribution pipe length is estimated to be 44 m.

The current OBC stipulates that a sewage system with a septic tank and in-ground absorption trench leaching bed must meet the following minimum requirements, with respect to capacity, based both on the percolation time of the predominant underlying soil deposit and the theoretical peak daily sanitary sewage flow of the single-family residence:

- 3,600 L dual-chambered septic tank equipped with an effluent filter as specified in the OBC stipulating a minimum of two days of storage at the peak daily flow and a tank size not less than a 3,600 L.
- In-ground absorption trench leaching bed with a total distribution pipe length of 40 m as specified in the OBC as the minimum total length, and calculated as follows:

$$L = \frac{Q \times T}{200}$$

where:

Q = 1,600 L/day (refer to Subsection 4.1.3.2)

T = $2 \min/cm$ (refer to Subsection 4.1.3.1)

The above calculations indicate that the septic tank <u>does not</u> meet the current minimum OBC capacity requirements; however, the leaching bed capacity <u>does</u> comply with the current capacity standard stipulated by the OBC. Further deficiencies of the sewage system are summarized as follows:

- The septic tank is a single compartment tank and may not properly separate solids and liquids.
- The septic tank contains a wooden divider which may not be properly functional as a partition it does not extend to the bottom of the tank.
- ▶ The septic tank does not contain an effluent filter.
- ▶ The septic tank is located 0.4 m from the building foundation.
- The septic tank is located within the 15 m OBC setback distance to the existing dug well servicing the dwelling.
- The exposed absorption trenches exhibit only a trace amount of stone encompassing the distribution tiles, and the stone used within the trench is significantly contaminated with soil.
- ▶ The absorption trenches were not covered with filter fabric.
- The exposed distribution tiles exhibit a moderate amount of dry sludge/biomaterial accumulation.
- The distance from the closest absorption trench to the existing dug well servicing the dwelling is approximately 8 m.

Despite the above-referenced deficiencies, the sewage system appears to function adequately, with no visual or reported evidence of effluent emission to the ground surface. The adequate functionality of the system is likely aided by the relatively low occupancy of the residence and the percolation rate of the sand and gravel soils in the area. Although the system does not meet the minimum horizontal distances set forth in the OBC to items such as structures and water supply wells, the leaching bed is vertically separated by greater than the OBC minimum of 900 mm to the high groundwater table.

4.1.2 Campground Washroom

4.1.2.1 *Percolation Time*

The subsurface soil stratigraphy in the vicinity of the campground washroom sewage system consists of topsoil overlying silt/sand and underlain by sand, some gravel. The leaching bed absorption trenches are founded within the sand deposit, therefore, for the purpose of the functional assessment, a percolation time was assessed using the sand soils.

The percolation time of the sand was assessed based on physical characteristics encountered during the subsurface investigation (i.e. structure, density, organics, etc.); and, soil type as described by the Unified Soil Classification System in Supplementary Standard SB-6 of the OBC, "Percolation Time and Soil Descriptions", and determined by the laboratory test results shown on the appended Figure 1. The sand is classified as "SP", for which the OBC specifies a percolation time of 2 to 8 min/cm. A percolation time of T = 5 min/cm was selected for the functional assessment.

4.1.2.2 Daily Design Sanitary Sewage Flow

The peak daily sanitary sewage flow used for the functional assessment of the campground washroom sewage system was derived from interviews with the client and estimated published values from the OBC. Although metered water use readings are collected throughout the operating season, the water use is not broken down between washrooms, drinking water, irrigation, showers, laundry, vehicle washing, etc.; therefore, the readings are not considered useful for peak daily flow calculations.

The washrooms are open seasonally and available to the entire campground (eighty trailer sites plus guests), however use of the washroom building is intended to be utilized primarily during social functions (i.e. bingo, card games) occurring at the pavilion or as a convenient alternative for a park residents while they are away from a private dwelling unit. Residents are advised by staff that the use of this facility was to be a secondary option when possible. Water use in the washroom building was reported to be minor given that most campground occupants abided by this guideline and used their private dwelling predominately. It is reported that the tank is pumped out as required, but generally only requires an annual pump out at the end of the season. Of note, laundry and showers facilities are not available in this building or publicly at the campground.

Campground site use is reported to peak on summer weekends with lower usage during the week. The theoretical peak daily flow for the campground washroom was calculated from Table 8.2.1.3.B. of the OBC. The calculation is based on an "Assembly Hall" occupancy, with no food service provided. The theoretical peak daily flow is thus calculated in the following table:

je je s		
DESCRIPTION	PEAK DAILY FLOW CALCULATION	PEAK DAILY FLOW
Assembly Hall (no food service provided)	50 seats x 8 L/day/seat	400 L/day
	Total	400 L/day

Table 3 : Peak Daily Sanitary Sewage Flow from the OBC (Campground Pavilion Washroom)

Therefore, a theoretical peak daily sanitary sewage flow of 400 L/day was used for the functional assessment.

¹⁶⁰⁻P-0000145-0-00-400-TU-R-0001-00

4.1.2.3 Assessment

The washroom is serviced by a sewage system that consists of a septic tank and in-ground absorption trench leaching bed. The park staff currently manages this system as a holding tank with an outlet overflow whereby they reportedly monitor the effluent levels and arrange for a pump out when the tank reaches its capacity, therefore preventing effluent overflow into the leaching bed system. The septic tank has an effective volume of 1,893 L (single-chambered plastic tank with no effluent filter), and the total distribution pipe length is estimated to be 6 m.

The current OBC and MOE stipulate that a sewage system with a septic tank and in-ground absorption trench leaching bed must meet the following minimum requirements, with respect to capacity, based both on the percolation time of the predominant underlying soil deposits and the theoretical peak daily sanitary sewage flow of the washrooms servicing the campground:

- 3,600 L dual-chambered septic tank equipped with an effluent filter as specified in the OBC stipulating a minimum of three days of storage at the peak daily flow and a tank size not less than a 3,600 L, and,
- In-ground absorption trench leaching bed with a total distribution pipe length of 40 m as specified in the OBC as the minimum total length, and calculated as follows:

$$L = \frac{Q \times T}{200}$$

where:

L = minimum required length of distribution pipe (m)

Q = peak daily sanitary sewage flow (L/day)

T = combined percolation time of predominant soils underlying the leaching bed (min/cm)

Each of the above parameters are detailed, as follows:

 \mathbf{Q} = 400 L/day (refer to Subsection 4.1.2.2)

T = 5 min/cm (refer to Subsection 4.1.2.1)

The above calculations indicate that the septic tank and leaching bed capacity do not comply with the **current** capacity standards stipulated by the OBC. Further deficiencies of the sewage system are summarized as follows:

- The septic tank is single-chambered tank (not dual-chambered), which does not have an internal partition divider to separate and contain solids.
- The septic tank does not contain an inlet baffle.
- ► The septic tank does not contain an outlet effluent filter.

- The distribution pipes are not covered or protected with any crushed stone and are susceptible to damage.
- ► The ends of the exposed distribution tiles are not capped.
- The minimum OBC setback distances between the washroom building and the septic tank, or the distribution pipes of the leaching bed do not comply.

Despite the above-referenced deficiencies, the sewage system appears to function adequately with no visual or reported evidence of effluent emission to the ground surface. The adequate functionality of the system is likely aided by the limited nature of its use due the reported low volume of sewage generated during the week and also the percolation rate of the sand soils in the area. As well, the system meets the minimum horizontal distances set forth in the OBC to property boundaries, water supply wells, and surface water bodies.

Of notable concern, the vertical separation from the leaching bed to the high groundwater table is less than 900 mm; however, the nearest drinking water supply well to the system is approximately 200 m upgradient of the sewage system leaching bed with respect to shallow groundwater flow, and the system is situated at least 50 m away from the nearest surface water body.

4.1.3 **Picnic Pavilion Washroom**

4.1.3.1 *Percolation Time*

The subsurface soil stratigraphy in the vicinity of the picnic pavilion washroom sewage system consists of topsoil overlying silt/sand and underlain by sand. For the purpose of the functional assessment, a percolation time was assessed using the sand deposit, however, it is reported that a septic tank/holding tank is the only sewage system component located in this area. A leaching bed comprising distribution pipes has not been constructed in this area and does not exist, reportedly.

The percolation time of the sand was assessed based on physical characteristics encountered during the subsurface investigation (i.e. structure, density, organics, etc.); and, soil type as described by the Unified Soil Classification System in Supplementary Standard SB-6 of the OBC, "Percolation Time and Soil Descriptions", and determined by the laboratory test results shown on the appended Figure 1. The sand is classified as "SP", for which the OBC specifies a percolation time of 2 to 8 min/cm. A percolation time of T = 5 min/cm was selected for the functional assessment.

4.1.3.2 Daily Design Sanitary Sewage Flow

The peak daily sanitary sewage flow used for the functional assessment of the picnic pavilion washroom sewage system was derived from interviews with the client and published values from the OBC. Although metered water use readings are collected throughout the operating season, the water use is not broken down between washrooms, drinking water, irrigation, showers, laundry, vehicle washing, etc.; therefore, the readings are not considered useful for peak daily flow calculations.

The picnic pavilion provides a dedicated shelter and grassed area for authorized groups and is used occasionally for private functions. Events are held infrequently on average of two per month, seasonally; and the reported number of visitors attending an event would be approximately fifty (50). Functions held at the pavilion are most commonly throughout the day and often involve a meal prepared using a BBQ and consists of mostly pre-packaged foods thus involving no kitchen preparation workspace.

The washrooms adjacent to the area are accessible and limited to persons attending a scheduled event held at the picnic pavilion. The washrooms doors are locked and inaccessible to campers at all other times since the use of the picnic washroom building is intended to be utilized only during these functions (i.e. family picnic or company demonstration). Water use in the picnic pavilion washroom building is reported to be minor given the limited use during the season. It is reported that the septic holding tank is pumped out as required, and reportedly, the property owner would typically only need to conduct an annual pump out at the end of the season.

The theoretical peak daily flow for the picnic pavilion was calculated from Table 8.2.1.3.B. of the OBC. The calculation is based on an "Assembly Hall" occupancy, with no food service provided. The theoretical peak daily flow is thus calculated in the following table:

DESCRIPTION	PEAK DAILY FLOW CALCULATION	PEAK DAILY FLOW
Assembly Hall (no food service provided)	50 seats x 8 L/day/seat	400 L/day
	Total	400 L/day

Table 4 : Peak Daily Sanitary Sewage Flow from the OBC (Picnic Pavilion Washroom)

Therefore, a theoretical peak daily sanitary sewage flow of 400 L/day was used for the functional assessment.

4.1.3.3 Assessment

The Picnic Pavilion is serviced by a sewage system that consists of only a septic holding tank. The total septic holding tank effective volume is 1,893 L (single-compartment plastic tank with no outlet).

The current OBC stipulates that a sewage system with a Class 5 septic holding tank must meet the following minimum requirements, with respect to capacity, based on the theoretical peak daily sanitary sewage flow of the Picnic Pavilion:

a 9,000 L single compartment holding tank equipped with an alarm, venting system and a pump-out contract based on the minimum requirement of seven (7) days of storage at the peak daily flow and not less than the value noted above as specified in the OBC;

In the event that the sewage system was deemed as a Class 4 system with no apparent leaching bed instead of a Class 5 holding tank, the current OBC stipulates that a sewage system with a septic tank and in-ground absorption trench leaching bed must meet the following minimum requirements, with respect to capacity, based both on the percolation time of the predominant underlying soil deposit and theoretical peak daily sanitary sewage flow of the Picnic Pavilion:

- 3,600 L minimum dual-compartment septic tank equipped with an effluent filter, based on the minimum requirement of three days of storage at the peak daily flow but not less than the value noted above as specified in the OBC; and,
- In-ground absorption trench leaching bed with a total distribution pipe length of 40 m as specified in the OBC as the minimum total length, and calculated as follows:

$$L = \frac{Q \times T}{200}$$

where:

Q = 400 L/day (refer to Subsection 4.1.3.2)

T = 5 min/cm (refer to Subsection 4.1.3.1)

The above calculations indicate that the septic holding tank does not meet the current minimum OBC capacity requirement as either a Class 5 holding tank or a Class 4 septic tank sewage system. The system, if classified as a Class 5, holding tank is not vented and does not contain a high level float and an audible or visual alarm. If classified as a Class 4 sewage system, the septic tank is not constructed with two compartments and the absence of a sewage system leaching bed in the form of an in-ground absorption trenches, provides no comparison of size for the capacity of the sewage system. Further deficiencies of the sewage system are summarized as follows:

- ► The septic/holding tank does not contain an inlet or outlet baffle or an effluent filter.
- The septic tank is located 0.6 m from the building foundation

Despite the above-referenced deficiencies, the sewage system appears to function adequately, with no visual or reported evidence of effluent emission to the ground surface. The adequate functionality of the system is likely aided by the infrequency of its use and because no apparent leaching bed exists that would disperse effluent to the surrounding soil.

4.1.4 Campground Trailer Sites

4.1.4.1 *Percolation Time*

The subsurface soil stratigraphy in the vicinity of the sewage systems servicing the campground trailer sites generally consists of a surficial layer of topsoil overlying a layer of silt/sand and underlain by either a deposit of sand, some gravel or a deposit of sand and gravel, both becoming saturated with depth. The leaching bed absorption trenches and infiltration configurations are founded primarily within the sand deposit, therefore, for the purpose of the functional assessment, the percolation time was assessed using the more conservative and predominant sand deposit.

The percolation time of the sand was assessed based on physical characteristics encountered during the subsurface investigation (i.e. structure, density, organics, etc.); and, soil type as described by the Unified Soil Classification System in Supplementary Standard SB-6 of the OBC, "Percolation Time and Soil Descriptions", and determined by the laboratory test results shown on the appended Figures 2 and 3. The sand is classified as "SP", for which the OBC specifies a percolation time of 2 to 8 min/cm. A percolation time of T = 8 min/cm was selected for the functional assessment.

4.1.4.2 Daily Design Sanitary Sewage Flow

The campground is available to a maximum of eighty (80) trailer sites, each containing a water service and a site sewer hook-up connected to a private Class 4 sewage system, and open seasonally between April and October. Trailer site use is reported to peak on summer weekends with lower usage throughout the week. The peak daily sanitary sewage flow used for the functional assessment of the campground area sewage systems was derived from published values from the OBC and MOE. The theoretical peak daily flow for the campground sites were calculated from Table 8.2.1.3.B. of the OBC. The calculation is based on a "Campground Park" occupancy, with water and sewer hook-up provided, with the current number of available sites stated as the capacity of the park. The theoretical peak daily flow is thus calculated in the following table:

Table 5 : Peak Daily Sanitary Sewage Flow from the OBC (Campground Area)

DESCRIPTION	PEAK DAILY FLOW CALCULATION	PEAK DAILY FLOW
Campground Trailer Sites (water and sewer hook-up)	80 sites x 425 L/day/site	34,000 L/day
	Total	34,000 L/day

160-P-0000145-0-00-400-TU-R-0001-00

SAGE CAMPGROUND - SEWAGE SYSTEMS ASSESSMENT, 1912 WHISTLE BARE ROAD, TOWNSHIP OF NORTH DUMFRIES, ONTARIO

It is important to note that as of the 2014 Operating Season, Sage Campground has started to record daily park water usage rates. Typical usage is approximately 3,800 L/day on weekdays, and 8,000 L/day on weekends. As the daily sanitary sewage flow would be close to the water usage values, it is clear that the actual peak daily sanitary sewage flow is significantly lower than the theoretical calculation presented above.

4.1.4.3 Assessment

Each campground site is serviced by a Class 4 sewage system that consists of septic tank(s) and an in-ground absorption trench type leaching bed. The sewage systems operate such that effluent flows through multiple tanks before overflowing into one of three leaching bed variations as described previously as 1st, 2nd and 3rd generation sewage systems. Each site contains multiple single-chambered plastic barrels as an alternative to a two-chambered traditional precast tank, contain no baffles or effluent filters and are each approximately 200 L in volume. The total septic tank volumes calculated for each site are dependent on the quantity of barrels/tanks installed but can be estimated to be approximately 400 L or 600 L (two tank and three tank configurations respectively). The variations of leaching beds that service each site contain between 0.3 and 6 m (total) of distribution pipe constructed as predominately an in-ground type leaching bed.

The current OBC and MOE stipulate that a sewage system with a septic tank and in-ground absorption trench leaching bed must meet the following minimum requirements, with respect to capacity, based both on the percolation time of the predominant underlying soil deposits and the theoretical peak daily sanitary sewage flow; based on an individual campground trailer site as described below:

- 3,600 L minimum dual-compartment septic tank servicing an individual site equipped with an effluent filter, based on the minimum requirement of three days of storage at the peak daily flow but not less than the value noted above as specified in the OBC; and an,
- in-ground absorption trench leaching bed servicing an individual site with a total distribution pipe length of 40 m as specified in the OBC as the minimum total length, and calculated as follows; or
 - based on a combined group trailer configuration which is centrally serviced as described below;
- 68,000 L (34,000 x 2 times the daily flow) minimum dual-compartment septic tank servicing all campsites equipped with an effluent filter, based on the minimum requirement of two days of storage at the peak daily flow as specified in the OBC; and an
- in-ground absorption trench leaching bed servicing all campsites with a total distribution pipe length of 1,360 m as specified in the OBC as the minimum total length, and calculated as follows;

LVM

200

where:

L = minimum required length of distribution pipe (m)

Q = peak daily sanitary sewage flow (L/day)

T = combined percolation time of predominant soils underlying the leaching bed (min/cm)

Each of the above parameters are detailed, as follows:

Q = 425 or 34,000 L/day, respectively (refer to Subsection 4.1.4.2)

T = 8 min/cm (refer to Subsection 4.1.4.1)

The above calculations indicate that the septic tank and leaching bed capacities for either an individual or group configuration do not comply with the current capacity standards stipulated by the OBC and MOE. Further deficiencies of the sewage systems are summarized as follows:

- The septic tanks are single-chambered tanks (not dual-chambered).
- ▶ The septic tanks do not contain inlet baffles.
- ► The septic tanks do not contain outlet effluent filters.
- The distribution piping and leaching beds are not constructed using standard construction methods or typical installation procedures
- Construction materials (some) used in the installation/construction of the absorption trench distribution system do not conform to Canadian Standards Association (CSA) and are not suitable for use.
- The distribution pipes are not covered or protected with any crushed stone and are susceptible to damage.
- ▶ The ends of the exposed distribution tiles are not capped and were found to be open.
- The minimum OBC distance setback distances between the trailer dwellings and the sewage systems (septic tanks, or the distribution pipes of the leaching beds) do not generally conform.

Despite the above-referenced deficiencies, the sewage systems appear to function, with no visual or reported evidence of effluent emission to the ground surface. The functionality of the systems are likely aided by the highly permeable soils, the seasonal nature of their use and relatively low volume of sewage generated by residents; both of which provide an opportunity for hydraulic and organic recovery from peak loads during non-use or non-peak periods. Further, the systems meet the minimum horizontal distances set forth in the OBC to permanent structures, property boundaries, water supply wells, and surface water bodies, however, as listed above, the vertical separation from a leaching bed to the high groundwater table is less than 900 mm in some instances, yet the nearest drilled well water supply well to an active independent sewage system (closest trailer site) is approximately 30 m away, and is upgradient, with respect to shallow groundwater flow.

As noted in Section 4.1.4.2, it is important to consider that the empirical water use data being collected in 2014 shows that the actual peak daily sanitary sewage flow is significantly lower than the theoretically calculated 34,000 L/day.

4.2 ENVIRONMENTAL ASSESSMENT

This subsection provides a collective environmental assessment of the public (campground washroom and picnic pavilion) and private (individual leaching bed) sewage systems, with respect to groundwater and surface water impact. This assessment will focus on the sewage systems within the campground itself, but does not include assessment of the main/secondary residences.

Considering the seasonal operation of the campground and for the purpose of assessment reevaluation, a previously calculated combined theoretical peak daily sanitary sewage flow of 34,000 L/day in the report, however, this value is considered excessive, given the park is operated on a seasonal basis and experiences limited resident usage during the week. Therefore, an estimated and more reasonable theoretical peak daily sanitary sewage flow of 17,000 L/day was used for the environmental assessment herein.

4.2.1 Groundwater Impact

As described previously in Section 3.4.1, groundwater chemistry data from across the site indicates that concentrations of sensitive parameters such as Nitrate and Total Coliforms are generally decreasing from the upgradient end of the property to the downgradient end. It is concluded that that natural attenuation processes in the subsurface soils and groundwater are effectively reducing the concentration of nitrate in shallow groundwater, and that external (upgradient) impacts such as agricultural processes are having a greater influence on shallow groundwater chemistry than the site itself.

As described in Section 3.3, shallow groundwater discharges to the surface water features (ponds and tributary creek) on the property. As a result, it is concluded that a surface water impact assessment is most appropriate for this site. Nonetheless, a groundwater impact assessment has been prepared for investigative purposes.

In accordance with Section 22.5, "Assessment of Impact on Water Resources", of the MOE document, <u>Design Guidelines for Sewage Works</u>, 2008 (DGSW), and MOE Guideline B-7, <u>Incorporation of the Reasonable Use Concept into MOEE Groundwater Management Activities</u>, a theoretical assessment of the potential impact of the sewage system on local off-site groundwater was conducted.

The DGSW stipulates that the critical contaminant to be used for the groundwater impact assessment is nitrate-nitrogen. The assessment involves theoretically predicting nitrate-nitrogen attenuation between the sewage system location(s) and the downgradient performance boundary, with respect to shallow groundwater flow. The purpose of the prediction is to derive the maximum effluent nitrate-nitrogen concentration objective for future sewage system design purposes. The methodology set forth in the DGSW uses a mass-balance formula to calculate attenuation.

The only permitted mode of attenuation in the formula is dilution via infiltrated precipitation of the subsurface sewage effluent plume. The DGSW and MOE Guideline B-7 stipulate a nitratenitrogen concentration limit in shallow groundwater at the downgradient performance boundary of 2.5 mg/L.

Based on this concentration limit and dilution via infiltrated precipitation, the maximum effluent nitrate-nitrogen concentration objective was calculated, as follows:

$$C_{PB} = \frac{C_S \times V_S}{V_S + A_D \times k \times 1,000}$$

where:

- C_{PB} = shallow groundwater nitrate-nitrogen concentration limit at downgradient performance boundary (mg/L as N)
- **C**_s = maximum effluent nitrate-nitrogen concentration objective (mg/L as N)
- V_s = annual effluent flow based on average daily design sanitary sewage flow (L/yr)

Although the property at 1898 Whistle Bare Road is currently not in use, the calculated effluent flow has been added to this calculation as a conservative measure in the event the property becomes occupied in the future.

A_D = dilution area calculated as the product of the leaching bed width transverse to shallow groundwater horizontal flow direction and the distance from the upgradient edge of the leaching bed(s) to the downgradient performance boundary (m²)

As shallow groundwater flows northwards and eastwards, generally parallel to the tributary creek, and the leaching beds for the Campground Washroom, Picnic Pavilion Washroom, and eighty individual trailers are distributed across the site, calculation of a sewage effluent plume area (for the purposes of assessing the volume of infiltrating precipitation that would act to dilute sewage effluent) is not feasible. Therefore, for the purposes of this assessment it is assumed that the full site area occupied by the eighty trailers (and bounded by the property boundary and the forested land abutting the tributary creek) constitutes the effluent plume area.

k = annual dilution (infiltrated precipitation – m)

Each of the above parameters are detailed as follows:

С_{РВ} = 2.5 mg/L

Vs = 4,744,270 L/yr

The annual effluent flow was estimated by summing the peak design flows provided in Section 4.1 (1,600 L/day for 1898 Whistle Bare Road; 400 L/day for the Campground Washroom; 400 L/day for the Picnic Pavilion Washroom; and 17,000 L/day for the eighty trailer sites) and applying a factor of 0.67 to convert the total peak flow to an average daily design flow, based on experience with other similar projects.

 $A_{\rm D} = 93,296 \, {\rm m}^2$

k = 0.25 m (constant stipulated in the DGSW)

The stipulated recharge value of 0.25 m/yr is higher than would normally be expected for the typically sandy soils underlying the site; however, the DGSW constant is stipulated for use in this application, and is understood to have been derived by the MOE to account for direct infiltration of precipitation as well as additional dilution effects, such as groundwater underflow and lateral plume dispersion.

The above mass balance formula yielded a maximum effluent nitrate-nitrogen effluent concentration objective of 14.8 mg/L. While domestic effluent would not be expected to have a nitrate concentration this low, it is clear that the theoretical calculation does not correlate with the empirical data from the site (discussed in Section 3.4.1) which shows no exceedances of the ODWS for nitrate (10 mg/L) in groundwater despite the significantly higher effluent concentration of nitrate in the leaching beds.

It is therefore concluded that the theoretical calculation is not supported by empirical data, and that no groundwater impacts are occurring as a result of the campground operations.

4.2.2 Surface Water Impact

Please see the Surface Water Impact Assessment memo included in Appendix 7.

5 **RECOMMENDATIONS**

5.1 SECONDARY RESIDENCE SEWAGE SYSTEM

The functional assessment of the sewage system that services the secondary single-family residence indicate that, despite its deficiencies, the system appears to function in an adequate manner, and there was no visual or reported evidence of effluent emission to the ground surface.

It is reasonable and worthwhile to consider the ongoing and continued use of the sewage system until such time that a partial or complete malfunction occurs, but given the age of the sewage system, it is advisable to consider upgrading to a new sewage system altogether at some point in time rather than replacing/upgrading individual components as they fail. Partial modifications may involve the replacement of the septic tank in the sewage system as it is an undersized, single compartment tank and located within the minimum O.B.C. setback regulations to the existing dug well servicing the residence. The existing leaching bed, although suitably sized, is also located within the water well setback, yet modifications to the leaching bed would not be practical as it would involve relocating the system. Given this information, it may be more conceivable to upgrade to a new drilled water well and decommission the dug well entirely, providing the life expectancy of the existing sewage system is taken into consideration. The property owner should consider the future use of the dug water well and decide if water could be supplied from the drilled water well located near the main residence or alternatively from a new well drilled elsewhere on the property. In the event that decommissioning of the current dug well is performed, it would be suitable to upgrade or replace the septic tank or the leaching bed; however, until the current water well situation is determined, the well will play an integral role in the construction of an upgraded sewage system.

Replacement of the entire sewage system in the future should be considered by the property owner based on the findings contained within this report, however, replacement of this system is not critical at this time, as the property has operated in this manner for years in the current location and has maintained these components successfully.

The following recommendations are made in order to improve the current system performance and extend the service life of the system, in the event that a new system is not required or installed.

- An outlet effluent filter should be installed on the septic tank and the filter should be cleaned regularly to ensure free flow of effluent from the septic tank to the leaching bed.
- Sludge accumulation in the septic tank should be monitored closely and it should be pumped once accumulation reaches one-third of the effective volume.
- The leaching bed header and distribution pipes should be "jet-cleaned" internally, in order to remove accumulated sludge and soil.

5.2 PICNIC PAVILION AND CAMPGROUND PAVILION SEWAGE SYSTEMS

The functional assessment of the washroom/campground pavilion sewage systems indicated that, despite their deficiencies, the systems appear to function in an adequate manner, in that there was no visual or reported evidence of effluent emission to the ground surface.

Based on the premise that the installed sewage systems are being utilized primarily as holding tank systems and are emptied as needed, no excessive amount of sewage effluent is anticipated to be discharged to the environment, that could cause a public health concern, although, it is recommend that proper controls be put in place to ensure that this does not occur. Such controls should include an alarm with audible and visual warning, an open aired vent to the tanks, plus the establishment of a service contract with a registered sewage system hauler operator.

To verify concentrations of Ammonia-N and Nitrate-N, it is recommended that one round of effluent chemistry sampling be undertaken from each system, with the samples submitted to an accredited laboratory for analysis of Ammonia-N, Nitrate-N, Nitrite-N, and Total Kjeldahl Nitrogen (TKN) parameters.

5.3 CAMPGROUND TRAILER SITES SEWAGE SYSTEMS

The functional assessment of a sample of sewage systems located randomly throughout the park indicate that despite the deficiencies noted, no visual or reported evidence of effluent emission to the ground surface exists; however, the observed building standards noted and construction practises used during the installation of the sewage systems do not conform to the OBC. Issuance of an ECA acknowledging the existing systems will need to reflect the existing system designs, and any replacement, upgrade, or expansion of the systems would need to meet all applicable OBC standards.

5.4 SURFACE WATER FEATURES

To assess the long term impacts of the property on adjacent surface water features, water chemistry sampling of the recreational pond upstream of the Blair Creek tributary and head pond discharge to the Blair Creek tributary, as well as locations BH3-12, BH4-12, and the downstream tributary sampling location, should be undertaken on a semi-annual basis (once in the spring upon opening of the campground, and once in the fall just prior to closing) with analysis of general chemistry parameters, to confirm that water quality parameter concentrations are not increasing over time. This semi-annual chemistry sampling should continue for a period of four years, after which time the results should be submitted to the MOE for review and assessment. If no increasing trends in nutrient parameters (Nitrate and derivatives, Phosphate and derivatives, and E.coli) are observed, the requirement for surface water chemistry sampling could be terminated.

5.5 ENVIRONMENTAL COMPLIANCE APPROVAL AND FUTURE RECOMMENDATIONS

Continued park operation will require admendment of the existing C of A into a new ECA that includes the existing approval for the main residence/office sewage system, and recognition of all existing systems on the property that have been described in this report, subject to the monitoring requirements outlined in Sections 5.1, 5.2, and 5.4.

Continued park operation under an ECA should include groundwater chemistry monitoring at selected upgradient and downgradient monitoring wells and the secondary residence water supply well on a semi-annual basis (coinciding with surface water chemistry monitoring) for a period of four years with analysis of general chemistry parameters, after which time the results should be submitted to the MOE for review and assessment. If no increasing trends in nutrient parameters (Nitrate and derivatives, Phosphate and derivatives, and E.coli) are observed, the requirement for surface water chemistry sampling could be terminated.

Additionally, water usage should be recorded on a daily basis in order to empirically assess the water usage for the same four year period.

As noted in Section 5.3, any replacement, upgrade of expansion of the trailer systems would need to meet all applicable OBC standards.

Please be advised that this sewage systems assessment is based only on limited observation of the above-described systems and should not be taken as a complete evaluation of construction. It is important to note that the extent of exploratory excavation into the sewage systems was balanced between the need to obtain sufficient information for the assessment, and the need to prevent irreparable damage and maintain the functional integrity of the systems. Finally, the assessment does not provide a warranty or projection of longevity for the sewage systems.

In the event that any of the sewage systems reaches the end of its service life, or occupancy of any of the facilities that are serviced by the sewage systems is increased, new/replacement systems must be designed by a professional engineer to comply with the OBC and DGSW, and an application must be made for amendment of the ECA prior to construction of the system.

STATEMENT OF LIMITATIONS

It is the sole responsibility of the owner to maintain and repair the existing sewage systems, and to provide additional sewage disposal capacity or replace the systems in the future (per OBC standards), if necessary. A reference list of recommended general sewage system operation and maintenance practices are presented in Appendix 1.

The subsurface investigations completed in support of this sewage systems assessment involved a limited sampling of the site gathered at specific test hole locations, and a limited observation of the existing sewage systems through exploratory investigation. The conclusions and recommendations in this report are based on this information gathered. The subsurface conditions between and beyond the test holes will differ from those encountered at the test holes.

Further, the conditions of the existing sewage systems may differ between the exploratory excavations. Should sewage system design services be required in the future, additional test holes may be required to further delineate subsurface conditions for design purposes.

REFERENCES

Chapman, L. J. and D. F. Putnam. 1984. *The Physiography of Southern Ontario*. 3rd ed. Ontario Geological Survey Special Volume 2, Ontario Ministry of Natural Resources, Ontario, Canada

Karrow, P.F. 1993. *Quaternary Geology, Stratford-Conestogo Area*. Ontario Geological Survey Report 283.

Ontario Ministry of the Environment. 1994. *Guideline B-7: Incorporation of the Reasonable Use Concept into MOEE Groundwater Management Activities.*

Ontario Ministry of the Environment. 1994. *Water Management: Policies, Guidelines, Provincial Water Quality Objectives*.

Ontario Ministry of the Environment. 2006. *Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.*

Ontario Ministry of the Environment. 2008. Design Guidelines for Sewage Works, 2008.

Ontario Ministry of Municipal Affairs and Housing: Building and Development Branch. 2007. *Ontario Building Code.*

Appendix 1 General Sewage System Operation and Maintenance

GENERAL SEWAGE SYSTEM OPERATION AND MAINTENANCE

Proper operation and regular servicing and maintenance of private on-site sewage systems are fundamental for long-term performance. It is the responsibility of the owner to ensure that the sewage system is operated within the parameters for which it was designed, and to maintain the system in accordance with Section 8.9 of the Ontario Building Code, 2012 (OBC), "Operation and Maintenance". The following recommendations are also made, with respect to operation and maintenance of the proposed sewage system:

- Private on-site sewage systems function primarily to treat and remove organic materials from domestic wastewater through both biological and physical processes. The addition of various chemicals such as fuels, grease, paints, pesticides, etc; or, solids such as cigarette butts, condoms, paper towels, diapers, sanitary napkins, etc. into the wastewater can greatly impede the performance of these processes, and must not be discharged to the system. Chemicals such as household drain solvents, cleaners, disinfectants, and bleach may be used in moderation.
- 2. One of the functions of the septic tank is to accommodate settlement of solid materials suspended in the wastewater before it is discharged to the leaching bed. Suspended solids that discharge to the leaching bed can clog pores within the soil structure and lead to operational difficulties. The baffles located at the inlet and outlet of the tank promote settlement by reducing agitation of the waste materials. The use and regular maintenance of the specified effluent filter will reduce the amount of suspended solids passing into the leaching bed, potentially prolonging the life of the system. Further, the septic tank must be pumped out when sludge/scum levels occupy one-third of its working capacity (approximately every three to five years).
- 3. All sewage systems have a limited liquid capacity. It is important for satisfactory long-term operation of the system to minimize extraneous sources of water being discharged to the leaching bed. Some common sources of extraneous water to be considered and methods of eliminating or minimizing their effects on the sewage system are described as follows:
 - Backwash water from water treatment systems, particularly water softeners can have an adverse affect on the operation of the system and also can cause premature rotting of concrete tanks. This water should be discharged elsewhere.
 - Wastewater from a kitchen equipped with a garbage grinder increases solids accumulation in the septic tank and therefore should not be used with an on-site sewage system.
 - Sump pump discharge and roof leader lines must drain into swales away from the leaching bed area and must not discharge into the sewage system.
 - Lot drainage must be completed such that properly graded swales direct surface water runoff around and away from the leaching bed.
 - The entire leaching bed area must be provided with good grass growth to help minimize infiltration and maximize evapotranspiration. Trees or shrubs should not be planted over the leaching bed area to encourage evaporation and prevent root intrusion into the distribution pipes.
 - Sprinkler systems should not be installed over the leaching bed area.

GENERAL SEWAGE SYSTEM OPERATION AND MAINTENANCE

(continued)

- The owner should use reasonable water consumption practices and not overload the system with high sustained flows or excessive peak flows.
- Water from pools or whirlpools can overload the system and impede biological processes in the system due to a relatively high concentration of chlorine. This water should be discharged elsewhere.
- 4. For sewage systems with a tertiary treatment unit, the owner must enter into an ongoing servicing and maintenance agreement with the unit manufacturer/distributor or authorized representative.
- 5. For a shallow buried trench leaching bed, effluent testing must be carried out annually in accordance with Article 8.9.2.4. of the OBC, and the effluent pump dosage should be monitored and adjusted periodically to reflect actual daily dosage.

For a sand area leaching bed, effluent testing must be carried out in accordance with the associated Building Materials Evaluation Commission Authorization Report (annual effluent testing recommended), and the pump dosage should be monitored and adjusted periodically to reflect daily dosage (if applicable).

Appendix 2 Tables

Table 101: Groundwater Measurements Table 102: Groundwater Chemistry Table 103: Surface Water Chemistry Table 104: Water Supply System Chemistry Analysis Table 105: Surface Water Chemistry Analysis

TABLE 101

GROUNDWATER MEASUREMENTS

Sage Campground - Sewage Systems Assessment 1912 Whistle Bare Road, Township of North Dumfries, Ontario

Ground		Torrad Disc		April 2	7, 2012	July 3	, 2012	August 8, 2012	
Borehole Number	Surface Elevation (mASL)	Elevation (mASL)	Pipe Diameter (mm)	Groundwater Elevation (mbTOP)	Groundwater Elevation (mASL)	Groundwater Elevation (mbTOP)	Groundwater Elevation (mASL)	Groundwater Elevation (mbTOP)	Groundwater Elevation (mASL)
1-12	300.48	301.27	50	1.76	298.72	1.94	298.54	2.04	298.44
2-12	301.19	301.92	50	2.46	298.73	2.66	298.53	2.78	298.41
3-12	299.68	300.54	50	1.19	298.49	1.36	298.32	1.47	298.21
3-12 (upper)	299.68	300.56	19	1.19	298.49	1.33	298.35	1.34	298.34
3-12 (lower)	299.68	300.52	19	1.25	298.43	1.25	298.43	1.49	298.19
4-12	298.95	299.70	50	0.61	298.34	0.78	298.17	0.86	298.09
5-12	298.98	299.71	50	1.34	297.64	1.49	297.49	1.57	297.41
6-12	298.48	299.16	50	0.98	297.50	1.15	297.33	1.23	297.25
7-12	297.96	298.73	50	1.11	296.85	1.27	296.69	1.33	296.63
8-12 (upper)	301.24	302.14	19	dry	dry	dry	dry	dry	dry
8-12 (lower)	301.24	302.06	50	3.14	298.10	3.37	297.87	3.48	297.76
MP-1	298.81	300.46	19	0.51	298.30	0.68	298.13	0.76	298.05
SW-1					298.51		298.34		298.22
MP-2	296.67	298.21	19	0.35	296.32	0.44	296.23	0.46	296.21
SW-2					296.26		296.22		296.19
MP-3	298.21	299.11	19	0.56	297.65	0.26	297.95	0.24	297.97
SW-3					297.90		297.88		297.89
MP-4	297.88	298.85	19	0.46	297.42	0.34	297.54	0.33	297.55
SW-4					297.51		297.44		297.43

<u>Notes</u> :

1. MP = mini-piezometer

2. SW = surface water adjacent the mini-piezometer

TABLE 102

GROUNDWATER CHEMISTRY

Sage Campground - Sewage Systems Assessment 1912 Whistle Bare Road, Township of North Dumfries, Ontario

Paramotor	opws	Type of	April 27, 2012								
Farameter	00113	Objective	BH 1-12	BH 2-12	BH 3-12	BH 4-12	BH 5-12	BH 6-12	BH 7-12	BH 8-12	Supply Well
Total Ammonia as N (mg/L)			<0.050	0.115	0.109	0.068	0.096	0.232	0.164	0.130	<0.050
Nitrate as N (mg/L)	10 ^a	MAC	0.69	6.74	3.28	5.87	5.88	<0.10	1.28	1.61	7.36
Nitrite as N (mg/L)	10 ^a	MAC	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50
Total Kjeldahl Nitrogen (mg/L)			<0.15	<0.15	0.17	0.31	0.16	0.81	0.32	0.22	
Total Phosphorous (mg/L)			0.532	1.14	1.09	1.13	0.332	1.16	1.52	0.179	<0.050
E. Coli (CFU/100 mL)	N/D	MAC	<10	<10	<10	<10	<10	<10	<10	<10	<10
Total Coliforms (CFU/100 mL)	N/D	MAC	210	<10	<10	<10	20	10	20	30	13
рН	6.5-8.5	OG	7.70	7.76	7.91	7.72	7.64	7.63	7.64	7.82	7.89
Temperature (degrees C)	15	AO	app. 7.9	app. 7.9	app. 7.9	7.9	app. 7.9	7.5	8.8	app. 7.9	

Parameter	ODWS	Type of	e of July 3, 2012								
	00113	Objective	BH 1-12	BH 2-12	BH 3-12	BH 4-12	BH 5-12	BH 6-12	BH 7-12	BH 8-12	Supply Well
Total Ammonia as N (mg/L)			<0.050	0.061	<0.050	<0.050	<0.050	0.455	0.072	<0.050	<0.050
Nitrate as N (mg/L)	10 ^a	MAC	1.01	7.37	4.92	5.52	0.78	<0.10	2.14	3.58	8.49
Nitrite as N (mg/L)	10 ^a	MAC	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total Kjeldahl Nitrogen (mg/L)			0.20	0.40	0.18	0.46	0.16	1.37	0.45	0.25	
Total Phosphorous (mg/L)			0.035	0.040	0.059	0.596	0.063	0.513	0.070	0.074	<0.050
E. Coli (CFU/100 mL)	N/D	MAC	0	0	0	0	0	0	0	0	0
Total Coliforms (CFU/100 mL)	N/D	MAC	240	90	30	10	7	50	20	20	0
рН	6.5-8.5	OG	7.37	7.55	7.46	7.41	7.28	6.70	7.41	7.57	7.98
Temperature (degrees C)	15	AO	11.1	10.7	10.0	11.4	12.8	12.0	13.1	10.4	

ODWS	Type of	August 8, 2012								
	Objective	BH 1-12	BH 2-12	BH 3-12	BH 4-12	BH 5-12	BH 6-12	BH 7-12	BH 8-12	Supply Well
		<0.050	<0.050	<0.050	<0.050	<0.050	0.392	<0.050	<0.050	<0.050
10 ^a	MAC	1.12	8.68	5.72	6.61	1.00	<0.10	2.91	4.23	9.40
10 ^a	MAC	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
		0.16	0.28	0.29	0.61	0.26	1.54	0.38	<0.15	
		0.046	0.687	2.23	0.032	2.12	0.438	0.487	0.094	<0.050
N/D	MAC	0	0	0	0	0	0	0	0	0
N/D	MAC	70	640	1	1	1	10	10	3	0
6.5-8.5	OG	6.95	7.34	7.48	7.49	7.36	6.78	7.26	7.56	7.96
15	AO	12.3	13.7	13.0	11.0	14.9	13.6	14.6	11.2	
	ODWS 10 ^a 10 ^a N/D N/D 6.5-8.5 15	Type of Objective 10 ^a MAC 10 ^a MAC N/D MAC N/D MAC 6.5-8.5 OG 15 AO	Type of Objective EH 1-12 <0.050	Type of Objective H 1-12 BH 2-12 <0.050	Type of Objective H 1-12 BH 2-12 BH 3-12 <0.050	Type of Objective BH 1-12 BH 2-12 BH 3-12 BH 4-12 <0.050	Type of Objective EH 1-12 BH 2-12 BH 3-12 BH 4-12 BH 5-12 <0.050	Type of Objective H 1-12 BH 2-12 BH 4-12 BH 5-12 BH 6-12 <0.050 <0.050 <0.050 <0.050 <0.050 0.392 10 ^a MAC 1.12 8.68 5.72 6.61 1.00 <0.10	Type of Objective Hugust 8, 2012 SH 1-12 BH 2-12 BH 3-12 BH 4-12 BH 5-12 BH 6-12 BH 7-12 <0.050	Type of Objective Hubber Line Hubber L

Notes :

1. Criteria from Ontario Drinking Water Standards (MOE, 2006)

2. Testing carried out at ALS Laboratories, Waterloo, Ontario

All highlighted / bold values exceed the Ontario Drinking Water Standarc
MAC - Maximum Acceptable Concentration (health-related); AO - Aesthetic Objective (non-health-related); OG - Operational Guideline (non-health-related)

a. Where both nitrate and nitrite are present, the total of the two should not exceed 10 mg/L (as nitrogen,

TABLE 103 SURFACE WATER CHEMISTRY Sage Campground - Sewage Systems Assessment 1912 Whistle Bare Road, Township of North Dumfries, Ontario

Parameter	PWQO	April 27, 2012	July 3, 2012	August 8, 2012	September 5, 2012
Total Ammonia as N (mg/L)		0.109	<0.050	<0.050	<0.05
Nitrate as N (mg/L)		5.80	6.92	7.58	7.1
Nitrite as N (mg/L)		<0.10	<0.10	<0.10	<0.10
Total Kjeldahl Nitrogen (mg/L)		0.52	0.25	0.25	0.39
Total Phosphorous (mg/L)	0.030	<0.030	<0.030	<0.030	0.0044
E. Coli (CFU/100 mL)	100 CFU/100 mL	78	260	330	220
Total Coliforms (CFU/100 mL)		85	2700	5100	9700
Biochemical Oxygen Demand (BOD ₅) (mg/L)		2.5	<2.0	<2.0	<2.0
Total Suspended Solids (mg/L)		6.0	9.6	48.0	15.2
рН	6.5 - 8.5	7.86	8.23	7.91	7.87
Temperature (degrees C)		approx. 8	11.0	12.2	11.2
Un-ionized Ammonia as N (mg/L)	0.020	approx. 0.002	<0.001	<0.001	<0.001

Notes :

1. Criteria from Provincial Water Quality Objectives (MOE, 1994)

Testing carried out at ALS Laboratories, Waterloo, Ontario
All highlighted / bold values exceed the Provincial Water Quality Objective

TABLE 104WATER SUPPLY SYSTEM CHEMISTRY ANALYSISSage Campground - Sewage Systems Assessment1912 Whistle Bare Road, Township of North Dumfries, Ontario

			27-Apr-12	3-Jul-12	8-Aug-12		
Parameter	ODWS Type of Objective		Raw - Pumphouse				
Total Ammonia as N (mg/L)			<0.050	<0.050	<0.050		
Nitrate on N (mg/L)	 10 ^a		<0.050	<0.050	<0.050		
Nitrate as N (mg/L)	10	MAC	7.30	8.49	9.40		
Nitrite as N (mg/L)	10 ^a	MAC	<0.50	<0.10	<0.10		
Total Kjeldahl Nitrogen (mg/L)							
Total Phosphorous (mg/L)			<0.050	<0.050	<0.050		
E. Coli (CFU/100 mL)	N/D	MAC	<10	0	0		
Total Coliforms (CFU/100 mL)	N/D	MAC	13	0	0		
рН	6.5-8.5	OG	7.89	7.98	7.96		
Temperature (degrees C)	15	AO					

			29-Ap	or-13	27-Ma	ay-13	05-Jul-13	
Parameter	ODWS	Type of Objective	Distribution - Site 46	Raw - Pumphouse	Distribution - Site 47	Raw - Pumphouse	Distribution - Site 80	Raw - Pumphouse
Total Coliforms (CFU/100 mL)	0	MAC	0	0	0	1	0	0
E. Coli (CFU/100 mL)	0	MAC	0	0	0	0	0	0
Chlorine - Free					2.3		1.38	
Lead	10	MAC			<1.0			
Nitrate as N (mg/L)	10	MAC				4.45		
Nitrite as N (mg/L)	1	MAC				<0.10		

TABLE 105 SURFACE WATER CHEMISTRY ANALYSIS - July 11, 2014 Sage Campground - Sewage Systems Assessment 1912 Whistle Bare Road, Township of North Dumfries, Ontario

	PWOO	SP2 Ungradient	SP1 (MP2-12)
	PWQO	SF2 Opgradient	Downgradient
Color, Apparent		10	9
Conductivity		408	613
Hardness (as CaCO3)		189	273
рН	6.5 - 8.5	8.55	8.13
Total Dissolved Solids		241	339
Turbidity		1	2
Alkalinity, Total (as CaCO3)		153	215
Ammonia, Total (as N)		<0.050	<0.050
Chloride		36	41
Fluoride		<0.10	<0.10
Nitrate-N		1	5
Nitrite-N		<0.10	<0.10
Total Kjeldahl Nitrogen		1	0
Phosphate-P (ortho)		<0.0030	<0.0030
Total Phosphorus	10 - 30 mg/L	0	0
Sulphate		23	26
E. Coli	100 CFU / 100mL	150	300
Total Coliforms		600	800
Aluminum (Al)-Total	0.0015 ma/L	<0.010	0.027
Antimony (Sb)-Total	0.02 mg/l	<0.0050	<0.0050
Arsenic (As)-Total	0.005 mg/l	<0.0010	<0.0010
Barium (Ba)-Total		0	0
Bervllium (Be)-Total	0.011 mg/l	<0.0010	<0.0010
Bismuth (Bi)-Total		<0.0010	<0.0010
Boron (B)-Total	0.2 mg/l	<0.050	<0.050
Cadmium (Cd)-Total	0.2 mg/L	<0.000	<0.000
Calcium (Ca)-Total		35	67
Chromium (Cr)-Total		<0.00050	<0.00050
Cobalt (Co)-Total	0.0009 mg/l	<0.00050	<0.00050
	0.0003 mg/L	<0.00000	<0.00050
Iron (Fe)-Total	0.001 mg/L	<0.0010	<0.0010
Lood (Pb)-Total	0.01 mg/L	<0.000	<0.000
Magnosium (Mg)-Total	0.001 mg/L	25	26
Manganasa (Ma) Total		25	20
Malydanum (Ma) Tatal	0.04 mg/l	-0.0010	10 0010
Niekel (Nii) Tetel	0.04 mg/L	<0.0010	<0.0010
Retassium (K) Total	0.025 mg/L	40.0020	40.0020
Solonium (So) Total	0.1 mg/l	-0.00040	-0.00040
Selenium (Se)-Total	0.1 mg/L	<0.00040	<0.00040
Silicon (SI)-Total		4	C 00010
Silver (Ag)-Total	0.0001 mg/L	<0.00010	<0.00010
Sodium (Na)-Total		16	20
Strontium (Sr)-Total		0	0
Thallium (TI)-Total	0.0003 mg/L	<0.00030	<0.00030
Tin (Sn)-Total		<0.0010	<0.0010
Titanium (Ti)-Total	//	<0.0020	<0.0020
i ungsten (VV)- i otal	0.03 mg/L	<0.010	<0.010
Uranium (U)- I otal	0.005 mg/L	<0.0050	<0.0050
Vanadium (V)-Total	0.006 mg/L	<0.0010	<0.0010
Zinc (Zn)-Total	0.02 mg/L	<0.0030	<0.0030
Zirconium (Zr)-Total	0.004 mg/L	<0.0040	<0.0040
BOD Carbonaceous		<2.0	<2.0

<u>Notes</u> :

1. Criteria from Provincial Water Quality Objectives (MOE, 1994)

2. Testing carried out at ALS Laboratories, Waterloo, Ontario

3. All highlighted / bold values exceed the Provincial Water Quality Objective

Appendix 3 Figures

Figures 1, 2 and 3: Particle Size Distribution Analyses

Appendix 4 Borehole, Test Pit, and Mini Piezometer Logs

List of Abbreviations Boreholes BH-01-12 to BH-08-12 Test Pits TP-1-13 to TP-11-13 Mini Piezometers MP-01-12 to MP-04-12

LIST OF ABBREVIATIONS

The abbreviations commonly employed on the borehole logs, on the figures, and in the text of the report, are as follows:

Sample Types			Soil Tests and Properties
ASAuger SampleCSCore SampleRCRock CoreSSSplit SpoonTWThinwall, OpenWSWash SampleBSBulk SampleGSGrab SampleWCWater Content STPThinwall, Piston	ample	SPT UC FV Ø Υ W _P W U _L I _P PP	Standard Penetration Test Unconfined Compression Field Vane Test Angle of internal friction Unit weight Plastic limit Water content Liquid limit Liquidity index Plasticity index Pocket penetrometer

Penetration Resistances				
Dynamic Penetration Resistance	The number of blows by a 63.5 kg (140 lb.) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) diameter 60° cone a distance 300 mm (12 in.).			
	The cone is attached to 'A' size drill rods and casing is not used.			
Standard Penetration Resistance, N (ASTM D1586)	The number of blows by a 63.5 kg (140 lb.) hammer dropped 760 mm (30 in.) required to drive a standard split spoon sampler 300 mm (12 in.)			
WH	sampler advanced by static weight of hammer			
PH	sampler advanced by hydraulic pressure			
PM	sampler advanced by manual pressure			

Soil Description					
Cohesionle	ess Soils	SPT N-Value	Relative Density (D _r)		
Compactness Condition (k		plows per 0.3 m)	(%)		
Very Loos	Very Loose		0 to 20		
Loose		4 to 10	20 to 40		
Compact	Compact		40 to 60		
Dense		30 to 50	60 to 80		
Very Dense		over 50	80 to 100		
Cohesive S	oils	Undrained Shear Strength (C _u)			
Consiste	ency	kPa	psf		
Very Soft		less than 12	less than 250		
Soft		12 to 25	250 to 500		
Firm		25 to 50	500 to 1000		
Stiff		50 to 100	1000 to 2000		
Very Stiff		100 to 200	2000 to 4000		
Hard		over 200	over 4000		
DTPL	Drier than plastic limit	Low Plasticity, $W_{L} < 30$			
APL	About plastic limit	Medium Plasticity, $30 < W_{L} < 50$			
WTPL	Wetter than plastic limit	High Plasticity, W _L > 50			

X:\Style_LVM_Ontario\LogBorehole_Log_LVM_Ontario_NEW.sty- Printed : 2012-10-03 09h

Vertical Scale = 1 : 40.0

Vertical Scale = 1 : 40.0

EQ-09-Ge-72 R.1 18.02.201

Vertical Scale = 1 : 40.0

EQ-09-Ge-72 R.1 18.02.201

Ground Elevation: 301.24 m

BH-8-12

Vertical Scale = 1:40.0

EQ-09-Ge-72 R.1 18.02.201

Test Pit Number: 1-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE		
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Water Content (%) 10 20 30	Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00			
0.00	FILL: dark brown silt (topsoil), moist; rootlets		-			
-	rusty brown sandy silt, moist		- -0.50 –			
-	TOPSOIL: layer of brown silt, moist; roots		_			
-	SILT/SAND: light brown silt, trace to some sand, moist		_			
1.00-			-1.00-			
-			-1.50-			
-	SAND: grey sand, trace to some silt, wet to saturated		-	1		
2.00-	Test pit terminated at 1.9 m.	<u>1991-996</u>	-2.00-			Upon completion of excacvation, test pit sidewalls stable.
_			-			Free groundwater seepage encountered at 1.8 m.
-			_			
-			-2.50-			
Re	eviewed by: VM					Drafted by: BS
Fie	eld Tech: BS					Sheet: 1 of 1
No	otes:					

Test Pit Number: 10-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment

Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	1		1	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP Water	Conten	WL t (%)	Groundwater Observations and Measurements (m)
	Ground Elevation		0.00					
0.00	TOPSOIL: dark brown sandy silt, damp to moist		-					
-	SILT/SAND: rusty brown sand, some silt damp		-0.50 — 					
1.00-			-1.00-					
-	SAND: light brown sand, some gravel, trace silt, damp		-	1				
-			-1.50 — - -					
2.00-	Test pit terminated at 2.0 m.		-2.00-					Upon completion of excacvation, test pit sidewalls stable.
-			-					No groundwater seepage encountered.
			-2.50-	1	1	1	1	
Re	eviewed by: VM							Drafted by: BS
Fie	eld Tech: BS							Sheet: 1 of 1
No	otes:							

Test Pit Number: 11-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Water Content (%) Groundwater Observations and Measurements (m) 10 20 30
0.00	Ground Elevation		0.00		
0.00	TOPSOIL: dark brown silt, moist; rootlets		-		
-			- -0.50		
-	SAND AND GRAVEL: brown coarse sand and gravel, trace silt, damp		-	. 1	
1.00			-1.00 — -		
-			- -1.50-		
-	Test pit terminated at 1.8 m.		-		Upon completion of excacvation, test pit sidewalls stable.
2.00 -			-2.00-		No groundwater seepage encountered.
_			-		
-			-2.50-		
Re Fie No	viewed by: VM eld Tech: BS otes:				Drafted by: BS Sheet: 1 of 1

Test Pit Number: 2-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00		
- 0.00	TOPSOIL: dark brown silt, moist; rootlets		-		
-	SILT/SAND: rusty brown silt and sand, moist; rootlets		-0.50 -	1	
			-		
1.00-			-1.00-		
-	SAND: brown sand, trace silt and fine gravel, wet saturated		-	1	
-	Test pit terminated at 1.6 m		-1.50-		Upon completion of excacvation, test pit
-			-		sidewalls caving.
-			-		Free groundwater seepage encountered at 1.3 m.
2.00-			-2.00-		
-			-		
_			_		
_			_		
			_		
	• • • • • • • • • • • • • • • • • • • •		-2.50-		
Re	eviewed by: VM				Drafted by: BS
FIC NL	eiu iech: Do				Sneet: 1 or 1
INC	JIG9.				

Test Pit Number: 3-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE		
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Water Content (%)	Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00			
0.00	TOPSOIL: dark brown silt, damp to moist		-	-		_
-	SILT: rusty brown silt, some sand, moist; rootlets		-	-		
-	SAND: brown sand, trace to some silt, damp		-0.50			
1.00-			-1.00-			
-						
-	trace silt, very moist		-1.50 — -	1		
-	saturated		- 2.00-	-		
-			-2.00			Upon completion of excapyation, test pit
_	Test pit terminated at 2.2 m.		_			sidewalls stable.
_			- -2.50-			Free groundwater seepage encountered at 1.8 m.
Re	eviewed by: VM					Drafted by: BS
Fie	eld Tech: BS					Sheet: 1 of 1
No	otes:					

Test Pit Number: 4-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Water Content (%) Groundwater Observations and Measurements (m) 10 20 30
0.00-	Ground Elevation TOPSOIL: dark brown silt, some gravel, damp SILT/SAND: brown to light brown sand and silt, moist SAND: brown sand, some gravel, trace silt, very moist saturated Test pit terminated at 1.4 m.		0.00 		Upon completion of excacvation, test pit sidewalls caving. Free groundwater seepage encountered at 1.2 m.
Re Fie No	eviewed by: VM eld Tech: BS otes:				Drafted by: BS Sheet: 1 of 1

Test Pit Number: 5-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00		
- 0.00	TOPSOIL: dark brown silt, moist; rootlets		-	-	
-	SILT/SAND: rusty brown silt and sand, moist		-0.50 — -		
-	SAND: brown sand, trace silt, very moist		_	-	
	saturated		-1.00-	1	
-	Test pit terminated at 1.4 m.		- - -1.50 —		Upon completion of excacvation, test pit sidewalls caving. Free groundwater seepage encountered at 0.9 m.
- - 2.00-			- -2.00-	-	
-					
_			-2.50-		
Re Fie No	eviewed by: VM eld Tech: BS otes:				Drafted by: BS Sheet: 1 of 1

Test Pit Number: 6-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE			
Depth (m)	Description	Symbol	Elevation (m)	Number	WP Water Co	wL wL 0 30	Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00				
0.00 —	TOPSOIL: dark brown silt, moist; rootlets		_				
-	SILT/SAND: rusty brown silt and sand, moist; rootlets		- 				
- - 1.00-	SAND: brown sand, trace silt, moist		- -1.00				
-	saturated		_				
-	Test pit terminated at 1.5 m.		-1.50-	1			Upon completion of excacvation, test pit sidewalls caving.
_			-				Free groundwater seepage encountered at 1.2 m.
- 2.00			-2.00-				
-			-				
-			-				
Re Fie No	eviewed by: VM eld Tech: BS otes:	<u> </u>	-2.50-	1		. 1	Drafted by: BS Sheet: 1 of 1

Test Pit Number: 7-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP WL Groundwater Observations and Measurements (m)
0.00-	Ground Elevation		0.00		
-	TOPSOIL: dark brown silt, moist; roots		-		
_	SILT/SAND: rusty brown silt and sand, moist		-0.50-		
-	SAND: brown sand, trace silt, very moist		-		
1.00	saturated		-1.00 — - -		Upon completion of excacvation, test pit
_	Test pit terminated at 1.3 m.		_		sidewalls caving.
-			-1.50 - -		Free groundwater seepage encountered at 1.0 m.
- 2.00 — -			- -2.00 -		
-			- -2.50-		
Re Fie No	eviewed by: VM eld Tech: BS otes:				Drafted by: BS Sheet: 1 of 1

Test Pit Number: 8-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE	1	1	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP Water Cont	WL ent (%)	Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00				
0.00	TOPSOIL: dark brown silt, moist; rootlets		-				
-	SILT/SAND: rusty brown silt and sand, moist		- -0.50 — -				
- 1.00 — - -			- -1.00 - -				
-	SAND: brown sand, trace silt and gravel, moist		- -1.50- -				
_	Test pit terminated at 1.8 m.		-				Upon completion of excacvation, test pit sidewalls stable.
2.00			-2.00-				Minor groundwater seepage encountered at 1.7 m.
			2 50				
Re Fie No	eviewed by: VM eld Tech: BS otes:		-2.30	<u> </u>			Drafted by: BS Sheet: 1 of 1

Test Pit Number: 9-13

Ground Elevation: n/a

Project: Sage Campground - Sewage System Assessment Location: 1912 Whistle Bare Road, Township of North Dumfries, ON

Job No.: P-0000145-400

	SOIL PROFILE			SAMPLE			1	
Depth (m)	Description	Symbol	Elevation (m)	Number	WP Water	Content	WL (%)	Groundwater Observations and Measurements (m)
0.00	Ground Elevation		0.00					
0.00-	TOPSOIL: dark brown silt, moist; rootlets		-					
-	SILT/SAND: rusty brown silt and sand, moist		-					
-	brown		-0.50 — - -					
- 1.00—			- 1.00-					
-	SAND AND GRAVEL: brown coarse sand and gravel, trace silt, damp		-	1				
-			-1.50 — -					
-			-					
2.00-	Test pit terminated at 2.0 m.	<u>9.010,18</u>	-2.00-					Upon completion of excacvation, test pit sidewalls stable.
-			-					No groundwater seepage encountered.
			-2 50					
Re	eviewed by: VM		-2.30	<u> </u>				Drafted by: BS
Fie	eld Tech: BS							Sheet: 1 of 1
N	otes:							

V:\Style_LVM_Ontario\LogBorehole_Log_LVM_Ontario.sty- Printed : 2013-11-04 11h

Ground Elevation: 298.21 m

Borehole Number:

MP-3-12

X:\Style_LVM_Ontario\LogBorehole_Log_LVM_Ontario_NEW.sty- Printed : 2012-10-03 09h

Vertical Scale = 1 : 40.0

EQ-09-Ge-72 R.1 18.02.201

Appendix 5 Drawings

Drawing 1: Location Plan Drawing 2: Site Plan Drawing 3: Quaternary Geology Drawing 4: Sewage System Locations

NOTES :

1-REFERENCES: GRAND RIVER CONSERVATION AUTHORITY, 2010 Aerial Photograph (2013).

SCALE 1:25000

10 cm

ŝ

4

 \mathfrak{S}

2

G:\160\P0000145\Z5_CAD\P-0000145-0-00-400_DWG01.DWG

10 cm

30\P0000145\Z5_CAD\P-0000145-0-00-400_DWG02.DV

TEST PIT LOCATION	<u>ND</u> :
BOREHOLE LOCATION	
MINI-PIEZOMETER LOCATION	
301.24 GROUND SURFACE ELEVATION (m)	
EMPORARY BENCHMARK	
SUBJECT PROPERTY BOUNDARY	
GRCA WETLAND LIMIT	
GRCA FLOODPLAIN LIMIT	
GRCA REGULATORY BOUNDARY	
CREEK	
GROUNDWATER FLOW CONTOUR (m) April 27, 2012	
SURFACE WATER SAMPLING LOCATION	
GROUNDWATER ELEVATION (m)	
SURFACE WATER ELEVATION - Adjacent Mini-Piezometer (m) April 27, 2012	
0 20 40 60 80 100 m	
SCALE 1:2000	
NOTES : 1-REFERENCES : GRAND RIVER CONSERVATION AUTHORITY (GRCA), 2010 Aerial Photography (2012)	
2-BENCHMARKS : Top of steel pin at locations noted on plan. Elevations: TBM-A: 299.040 m; TBM-B: 300.439 m; TBM-C: 298.704.	
Project	
Sage Campground Sewage Systems Assessment	
1912 Whistle Bare Road. Township of North Dumfries, Ontario	
Title	\square
SITE PLAN	

Appendix 6 Laboratory Certificates of Analysis

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 27-APR-12 Report Date: 04-MAY-12 13:26 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1140387

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000145-400 126535

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1140387-1 BH-01-12 Sampled By: K. THRAMS on 27-APR-12 @ 10:35 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	0.69		0.20	mg/L		03-MAY-12	
Nitrate-N	0.69		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	<0.15		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	0.532		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological Tests							
E. Coli	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794
Total Coliforms	210	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-2 BH-02-12 Sampled By: K. THRAMS on 27-APR-12 @ 10:50 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.115		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	6.74		0.20	mg/L		03-MAY-12	
Nitrate-N	6.74		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	<0.15		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	1.14		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological Tests							
E. Coli	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794
Total Coliforms	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-3 BH-03-12 Sampled By: K. THRAMS on 27-APR-12 @ 11:20 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.109		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	3.28		0.20	mg/L		03-MAY-12	
Nitrate-N	3.28		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	0.17		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	1.09		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological lests							
E. Coli	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794
Total Coliforms	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-4 BH-04-12 Sampled By: K. THRAMS on 27-APR-12 @ 13:10 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.068		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	5.87		0.20	mg/L		03-MAY-12	
Nitrate-N	5.87		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1140387-4 BH-04-12							
Sampled By: K. THRAMS on 27-APR-12 @ 13:10							
Matrix: WATER							
Anions and Nutrients							B
I otal Kjeldani Nitrogen	0.31		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total Bacteriological Tests	1.13		0.030	mg/∟	30-APR-12	01-MAY-12	R2358747
F. Coli	<10	DLM	10	CFU/100ml	28-APR-12	29-APR-12	R2357794
Total Coliforms	<10	DLM	10	CFU/100ml	28-APR-12	29-APR-12	R2357788
11140387-5 BH-05-12			10	0.0,100	20741112	20741112	112001100
Sampled By: K. THRAMS on 27-APR-12 @ 11:50 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.096		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	5.88		0.20	mg/L		03-MAY-12	
Nitrate-N	5.88		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	0.16		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	0.332		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological Tests							
E. Coli	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794
Total Coliforms	20	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-6 BH-06-12 Sampled By: K. THRAMS on 27-APR-12 @ 12:25 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.232		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	<0.2		0.20	mg/L		03-MAY-12	
Nitrate-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	0.81		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	1.16		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological Tests							
	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794
	10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-7 BH-07-12 Sampled By: K. THRAMS on 27-APR-12 @ 12:45 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.164		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	1.28		0.20	mg/L		03-MAY-12	
Nitrate-N	1.28		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	0.32		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	1.52		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological Tests							
E. Coli	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1140387-7 BH-07-12 Sampled By: K. THRAMS on 27-APR-12 @ 12:45 Matrix: WATER							
Bacteriological Tests							
Total Coliforms	20	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-8 BH-08-12 Sampled By: K. THRAMS on 27-APR-12 @ 10:00 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.130		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	1.61		0.20	mg/L		03-MAY-12	
Nitrate-N	1.61		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	0.22		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total	0.179		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
Bacteriological Tests							
E. Coli	<10	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357794
Total Coliforms	30	DLM	10	CFU/100mL	28-APR-12	29-APR-12	R2357788
L1140387-9 SURFACE WATER Sampled By: K. THRAMS on 27-APR-12 @ 09:25 Matrix: WATER							
Physical Tests							
Total Suspended Solids Anions and Nutrients	6.0		3.0	mg/L	03-MAY-12	04-MAY-12	R2360159
Ammonia, Total (as N)	0.109		0.050	mg/L		01-MAY-12	R2358391
Nitrate and Nitrite as N	5.8		0.20	mg/L		03-MAY-12	
Nitrate-N	5.80		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N	<0.10		0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Total Kjeldahl Nitrogen	0.52		0.15	mg/L	30-APR-12	01-MAY-12	R2358414
Phosphorus, Total Bacteriological Tests	<0.030		0.030	mg/L	30-APR-12	01-MAY-12	R2358747
E. Coli	78		0	CFU/100mL	28-APR-12	29-APR-12	R2357794
Total Coliforms	85		0	CFU/100mL	28-APR-12	29-APR-12	R2357788
Aggregate Organics			Ū				
BOD Carbonaceous	2.5		2.0	mg/L	28-APR-12	03-MAY-12	R2359653

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

QC Samples w	QC Samples with Qualifiers & Comments:									
QC Type Descri	ption	Parameter	Qualifier	Applies to Sample Number(s)						
Duplicate		E. Coli	DLM	L1140387-1, -2, -3, -4, -5, -6, -7, -8, -9						
Matrix Spike		Ammonia, Total (as N)	MS-B	L1140387-1, -2, -3, -4, -5, -6, -7, -8, -9						
Sample Parame	eter Qualifier key li	isted:								
Qualifier	Description									
DLM	Detection Limit Adjus	sted For Sample Matrix Effects								
MS-B	Matrix Spike recover	y could not be accurately calculate	ed due to high analyte t	background in sample.						
Test Method R	eferences:									
ALS Test Code	Matrix	Test Description	Method Refere	ence**						
BOD-C-WT Sample is incut	Water pated at 20°C– 1 C fo	BOD Carbonaceous r 5 days using a nitrification inhibi	APHA 5210 B tor.							
EC-MF-WT A 100mL volum Method ID: WT	Water ne of sample is filtered -TM-1200	E. coli through a membrane, the membrane	SM 9222D rane is placed on mFC-	BCIG agar and incubated at @44.5–0.2°C for 24–2h.						
ETL-N2N3-WT	Water	Calculate from NO2 + NO3	APHA 4110 B							
NH3-WT Sample is mea colorimetrically.	Water sured colorimetrically.	Ammonia as N When sample is turbid a distillatio	EPA 350.1 on step is required, sam	nple is distilled into a solution of boric acid and measured						
NO2-WT A filtered water	Water sample (drinking wate	Nitrite-N ers-unfiltered) is analyzed by ion c	EPA 300.0 (IC) hromatography.)						
NO3-WT A filtered water	Water sample (drinking wate	Nitrate-N ers-unfiltered) is analyzed by ion c	EPA 300.0 (IC) hromatography.)						
P-TOTAL-WT Samples are di antimonyl tartra	Water gested to convert the t ite to form a antimonyl	Total Phosphorus total phosphorus to orthophospha -phosphomolybdate complex. Thi	APHA 4500-P te. The orthophosphate s complex is measured	B E reacts with ammonium molybdate and potassium colorimetrically and reported as phosphorus.						
SOLIDS-TSS-W A well-mixed sa four hours or ur	T Water ample is filtered throug ntil a constant weight is	Total Suspended Solids h a weighed standard glass fibre s achieved.	APHA 2540 D- filter and the residue re	Gravimetric tained is dried in an oven at 105–5°C for a minimum of						
TC-MF-WT A 100mL volum Method ID: WT	Water ne of sample is filtered -TM-1200	Total Coliforms through a membrane, the membrane	SM 9222B rane is placed on mENI	DO LES agar and incubated at 35–0.5°C for 24–2h.						
TKN-WT Sample is diges by the instrume	Water sted to convert the TK ent is proportional to th	Total Kjeldahl Nitrogen N to ammonium sulphate. The arr e concentration of ammonium sul	APHA 4500-N monia ions are heated phate in the sample an	to produce a colour complex. The absorbance measured d is reported as TKN.						
** ALS test metho	ds may incorporate mo	odifications from specified referen	ce methods to improve	performance.						
The last two lette	ers of the above test co	ode(s) indicate the laboratory that	performed analytical a	nalysis for that test. Refer to the list below:						

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
Chain of Custody Numbers:	

126535

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

			Workorder:	L1140387	' R	eport Date: 04-N	/IAY-12	Paç	ge 1 of 4
Client: Contact:	LVM INC. 353 BRID KITCHEN DAVE MC	Ige St. E. Ier on N2K 2Y: Drlock	5						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BOD-C-WT		Water							
Batch R	2359653								
WG1463764-3 BOD Carbonad	LCS ceous			97.0		%		85-115	03-MAY-12
WG1463764-1 BOD Carbonad	MB ceous			<2.0		mg/L		2	03-MAY-12
EC-MF-WT		Water							
Batch R	2357794								
WG1463780-1 E. Coli	MB			0		CFU/100mL		1	29-APR-12
NH3-WT		Water							
Batch R	2358391								
WG1464660-2 Ammonia, Tota	CVS al (as N)			98.7		%		85-115	01-MAY-12
WG1464660-1				-0.050		ma/l		0.05	
WG1464660-4	MS		l 1139999-1	<0.030		iiig/L		0.05	01-MAY-12
Ammonia, Tota	al (as N)			87.5		%		75-125	01-MAY-12
WG1464660-6 Ammonia, Tota	MS al (as N)		L1140294-4	N/A	MS-B	%		-	01-MAY-12
WG1464660-8 Ammonia, Tota	MS al (as N)		L1140770-2	84.5		%		75-125	01-MAY-12
NO2-WT		Water							
Batch R	2359735								
WG1465702-6 Nitrite-N	DUP		L1140387-5 <0.10	<0.10	RPD-NA	mg/L	N/A	20	02-MAY-12
WG1465702-3 Nitrite-N	LCS			92.2		%		85-115	02-MAY-12
WG1465702-4 Nitrite-N	LCSD		WG1465702-3 92.2	92		%	0.0	25	02-MAY-12
WG1465702-1 Nitrite-N	MB			<0.10		mg/L		0.1	02-MAY-12
NO3-WT		Water				-			-
Batch R	2359735								
WG1465702-6 Nitrate-N	DUP		L1140387-5 5.88	5.88		mg/L	0.034	20	02-MAY-12
WG1465702-3 Nitrate-N	LCS			98.6		%		85-115	02-MAY-12
WG1465702-4	LCSD		WG1465702-3						J= 11 1E

Quality Control Report

		Workorder: L1140387		7 F	Report Date: 04-MAY-12		Page 2 of 4	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-WT	Water							
Batch R2359735 WG1465702-4 LCSD Nitrate-N		WG1465702- 3 98.6	3 99		%	0.041	25	02-MAY-12
WG1465702-1 MB Nitrate-N			<0.10		mg/L		0.1	02-MAY-12
P-TOTAL-WT	Water							
Batch R2358747 WG1464796-2 CVS Phosphorus, Total			104.0		%		80-120	01-MAY-12
WG1464591-3 DUP Phosphorus, Total		L1140387-1 0.532	0.538		mg/L	1.1	25	01-MAY-12
WG1464591-4 DUP Phosphorus, Total		L1140387-8 0.179	0.218		mg/L	20	25	01-MAY-12
WG1464591-2 LCS Phosphorus, Total			102		%		80-120	01-MAY-12
WG1464591-1 MB Phosphorus, Total			<0.030		mg/L		0.03	01-MAY-12
SOLIDS-TSS-WT	Water							
Batch R2360159 WG1466120-1 LCS Total Suspended Solids			100.8		%		80-120	04-MAY-12
WG1466120-2 MB Total Suspended Solids			<3.0		mg/L		3	04-MAY-12
TC-MF-WT	Water							
BatchR2357788WG1463783-1MBTotal Coliforms			0		CFU/100mL		1	29-APR-12
TKN-WT	Water							
Batch R2358414 WG1464794-2 CVS								
Total Kjeldahl Nitrogen			97.0		%		75-125	01-MAY-12
WG1464591-3 DUP Total Kjeldahl Nitrogen		L1140387-1 <0.15	<0.15	RPD-N/	4 mg/L	N/A	20	01-MAY-12
WG1464591-4 DUP Total Kjeldahl Nitrogen		L1140387-8 0.22	0.22		mg/L	0.64	20	01-MAY-12
WG1464591-2 LCS Total Kjeldahl Nitrogen			94.2		%		80-120	01-MAY-12
WG1464591-1 MB								

Quality Control Report

			Workorder:	L114038	7	Report Date:	04-MAY-12	P	age 3 of 4
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-WT		Water							
Batch WG14645 Total Kjel	R2358414 91-1 MB Idahl Nitrogen			<0.15		mg/L		0.15	01-MAY-12
Workorder: L1140387

Report Date: 04-MAY-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

5

			1	رون (10 میں	tana katina m		gen in 1997 and a substantia and the substantian and the substantian pro-	an faile to a star two services to start the service of the servic	 Second Action Control (1997) 1997 (1997) 		- Allower - March				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2 2 1977 - Santa Anglan pag	/		and the second second		C of C # 0000	0
WATERI OO, ON N	12V 2B8		to a subsection of the section of th					CHAIN O	F CUST	ODY /	ANA	ALYT	ICA	L SE	RVIC	CES I	REQ	UES	T FC)RM	Pa	ige of	1
Phone: (519) 886-	6910		tugu erusue				Note: all TAT Ouo	ted material is i	in business	davs whic	h exclu	ude	T	Spe	cify da	te	S	ervice	e requ	ested	I	2 day TAT (50%)	
Fax: (519) 886-90	47	AUX.2001 THE HAVE		A	LS)	- :	statutory holidays	and weekends.	TAT samp	les receive	d past	: 3:00 j	om	re	quired	_	5 day (regular) 🗡				\times	Next day TAT (100%)	
Toll Free: 1-800-6	68-9878					·	or Saturday/Sund	ay begin the ne	xt day.							3-4 day (25%)						Same day TAT (200%)	
COMPANY NAME	LV	'M					CRITERIA	Criteria on	report YES	NO				ANALYSIS REQUEST								ED,	
OFFICE	Kita	hen	15				Reg 153/04 🖵 Table 1 2	Reg 511/09 🗆 3 4 5	67	8 9												< (F, P, F/P)	
PROJECT MANAGER	Dare 4	ol	rek				TCLP MISA PWQO														SUBMISSION #:		
PROJECT # 160-	00000 # 14	5-	400				ODWS OT	HER														L114038	57
PHONE 519. 741	.1313	FAX	519.	74	1.5	472	REPORT	REPORT FORMAT/DISTRIBUTION				7			hoser	S						ENTERED BY: Augtor F	
ACCOUNT #							EMAIL FAX BOT				NERS	2			i k	Per		ب ج				DATE/TIME ENTERED:	
QUOTATION #		PO #	2	051	30				BOTH		ONTAI	'ogen,	Yeli		cnix	an he		iten	(0			271041121	9:16
SA	MPLING INFO		TION			N	EMAIL 2				OF C	"Mìth	-Fi Z		4	and		3	2			BIN # RS2	\leq
Sample Date/	Time	4	PE	R		l es					BER	4	4	_	-	- <u>x</u>	Ì	7	30	S			
Date (dd-mm-yy)	Time (24hr) (hh:mm)	сом	GRAB	WATE	SOIL	OTHE	SAMPLE DESCI	RIPTION TO APP	PEAR ON RI	EPORT	MUN	hita	nitr	1kh	44	194	ц.	494	U	K		COMMENTS	LAB ID
2012-04-27	10:35			X	L		BH-01-12					~	6	4	<u> </u>	~	~	~					-1
	10:50			Χ,			Bit-02-12					~	V	-1	-1	~	~	~					-2
	11:20			\mathbf{b}	ļ		<u>ISH-03-12</u>					~	V	V	_4	~	V	~					
	13:10			Ю.	<u> </u>	 	13H~04-12				<u> </u>	V		V	-4		~	~					-4
	11:50			\diamond			BAT OS-12						<i>v</i>					6					$-\frac{2}{7}$
	12:15			Ю,	ļ	<u> </u>	24 12 12				╂──			-/		1	V	-					
	12:45			\diamond	<u> </u>		34-07-12								-		4				<u> </u>		- 7
<u>_</u>	10:00			Ą,		ļ	1517-08-12					<u> </u>	-	V			-	-					-8
	9:25			X			surface i	valt?				-	~	~	-		0		ļ	0			
· · · · · · · · · · · · · · · · · · ·						+					<u> </u>	<u> </u>											
	ĺ																						
																						CANDIE CONDITI	<u></u>
SPECIA	* L 1	14	03	8 7	-	со	F C *	THE QUESTION	S BELOW M	USI BE AN	SWEKE	DFOR	VATER	SAMPL	ES (U	IECK T	es OR					FROZEN	MEAN /
							If yes, an authori	zed drinking w	ater COC N	IUST be u	sed fo	r this s	ubmi	ssion.		res						COLD	TEMP -
							Is the water samp	oled intended to	o be potab	le for hun	nan co	nsump	tion?			Yes		NOA					l'ăs l
SAMPLED BY: K	Thraws	1					DATE & TIME	RECEIVED BY:	ic	\mathcal{A}							UATE	S TIME					XAX
RELINQUISHED BY:	Thran	N	_				DATE & TIME RECEIVED AT LAB Y										PTE	11/2	刑	2	17	If yes and SIF	LYX
Notes				1. Apren 1					-1-16	•			14 K. 15 (16) (17)					T	<u> </u>			·01	
1. Quote number must b	e provided to e	nsure (proper	pricing	I		2. TAT may vary dep Please contact the	endent on compl e lab to confirm T	exity of anal ATs.	ysis and Ial	b workl	oad at	time of	submi	ssion.	3. Any chai	known n of cu	i or sus istody i	pected n com	hazar nents	ds rela section	ting to a ^t sample must be not 1.	ed on the

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 27-APR-12 Report Date: 04-MAY-12 13:26 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1140393

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000 145-400 126536

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Cample Details/1 arameters Result Quality	fier* D.L.	Units	Extracted	Analyzed	Batch
L1140393-1 WATER SUPPLY WELL- UNTREATED					
Sampled By: K. THRAMS on 27-APR-12 @ 08:40 Matrix: WATER					
Physical Tests					
Color, Apparent <1.0	1.0	C.U.	28-APR-12	28-APR-12	R2357536
Conductivity 987	3.0	umhos/cm	30-APR-12	30-APR-12	R2358057
рН 7.89	0.10	pH units	30-APR-12	30-APR-12	R2358054
Redox Potential 136	-1000	mV	30-APR-12	30-APR-12	R2358060
Total Dissolved Solids 590	20	mg/L	01-MAY-12	02-MAY-12	R2359004
Turbidity <0.10	0.10	NTU	28-APR-12	28-APR-12	R2357499
Anions and Nutrients					
Alkalinity, Bicarbonate (as CaCO3) 236	10	mg/L	02-MAY-12	02-MAY-12	R2359956
Alkalinity, Carbonate (as CaCO3) <10	10	mg/L	02-MAY-12	02-MAY-12	R2359956
Alkalinity, Hydroxide (as CaCO3) <10	10	mg/L	02-MAY-12	02-MAY-12	R2359956
Alkalinity, Total (as CaCO3) 237	10	mg/L	02-MAY-12	02-MAY-12	R2359956
Ammonia, Total (as N) <0.050	0.050	mg/L		01-MAY-12	R2358391
Bromide <0.50	0.50	mg/L	02-MAY-12	02-MAY-12	R2359735
Chloride 137	2.0	mg/L	02-MAY-12	02-MAY-12	R2359735
Computed Conductivity 853		uS/cm		03-MAY-12	
Conductivity % Difference -14.6		%		03-MAY-12	
Fluoride <0.50	0.50	mg/L	02-MAY-12	02-MAY-12	R2359735
Hardness (as CaCO3) 297		mg/L		03-MAY-12	
Ion Balance 105		%		03-MAY-12	
Langelier Index 0.7				03-MAY-12	
Nitrate-N 7.36	0.10	mg/L	02-MAY-12	02-MAY-12	R2359735
Nitrite-N <0.50	0.50	mg/L	02-MAY-12	02-MAY-12	R2359735
Saturation pH 7.17		рН		03-MAY-12	
Phosphate-P (ortho) <0.0030	0.0030	mg/L		01-MAY-12	R2358497
TDS (Calculated) 523		mg/L		03-MAY-12	
Sulphate 27.8	2.0	mg/L	02-MAY-12	02-MAY-12	R2359735
Anion Sum 8.89		me/L		03-MAY-12	
Cation Sum 9.32		me/L		03-MAY-12	
Cation - Anion Balance 2.3		%		03-MAY-12	
	2.1			02 MAX 42	
Silica 7.7	2.1	mg/L		02-IVIA 1-12	
F Coli	M 10	CEU/100ml	28-APR-12	29-APR-12	R2357794
Total Coliform Background	0	CFU/100ml	28-APR-12	29-APR-12	R2357788
Total Coliforms	0	CFU/100ml	28-APR-12	29-APR-12	R2357788
Metals	0	or of roome	20701012	207411112	112001100
Sodium Adsorption Ratio	0.030			03-MAY-12	
Total Metals					
Aluminum (Al)-Total <0.010	0.010	mg/L	30-APR-12	30-APR-12	R2358222
Antimony (Sb)-Total <0.0050	0.0050	mg/L	30-APR-12	30-APR-12	R2358222
Arsenic (As)-Total <0.0010	0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Barium (Ba)-Total 0.078	0.010	mg/L	30-APR-12	30-APR-12	R2358222

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1140393-1 Sampled By: Matrix:	WATER SUPPLY WELL- UNTREATED K. THRAMS on 27-APR-12 @ 08:40 WATER							
Total Metals								
Beryllium (B	e)-Total	<0.0010		0.0010	mg/L	30-APR-12	01-MAY-12	R2358290
Bismuth (Bi))-Total	<0.0010		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Boron (B)-To	otal	<0.050		0.050	mg/L	30-APR-12	30-APR-12	R2358222
Cadmium (C	Cd)-Total	<0.000090		0.000090	mg/L	30-APR-12	30-APR-12	R2358222
Calcium (Ca	a)-Total	84.6		0.50	mg/L	30-APR-12	30-APR-12	R2358222
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	30-APR-12	30-APR-12	R2358222
Cobalt (Co)-	Total	<0.00050		0.00050	mg/L	30-APR-12	30-APR-12	R2358222
Copper (Cu))-Total	0.0166		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Iron (Fe)-Tot	tal	<0.050		0.050	mg/L	30-APR-12	30-APR-12	R2358222
Lead (Pb)-To	otal	0.0023		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Magnesium	(Mg)-Total	20.8		0.50	mg/L	30-APR-12	30-APR-12	R2358222
Manganese	(Mn)-Total	0.0012		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Molybdenum	n (Mo)-Total	<0.0010		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Nickel (Ni)-T	otal	<0.0020		0.0020	mg/L	30-APR-12	30-APR-12	R2358222
Phosphorus	(P)-Total	<0.050		0.050	mg/L	30-APR-12	30-APR-12	R2358222
Potassium (I	K)-Total	1.2		1.0	mg/L	30-APR-12	30-APR-12	R2358222
Selenium (S	e)-Total	<0.00040		0.00040	mg/L	30-APR-12	30-APR-12	R2358222
Silicon (Si)-T	Total	3.6		1.0	mg/L	30-APR-12	30-APR-12	R2358222
Silver (Ag)-T	Fotal	<0.00010		0.00010	mg/L	30-APR-12	30-APR-12	R2358222
Sodium (Na))-Total	77.0	DLM	5.0	mg/L	30-APR-12	30-APR-12	R2358222
Strontium (S	Sr)-Total	0.231		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Thallium (TI))-Total	<0.00030		0.00030	mg/L	30-APR-12	30-APR-12	R2358222
Tin (Sn)-Tota	al	<0.0010		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Titanium (Ti))-Total	<0.0020		0.0020	mg/L	30-APR-12	30-APR-12	R2358222
Tungsten (W	V)-Total	<0.010		0.010	mg/L	30-APR-12	30-APR-12	R2358222
Uranium (U)	I-Total	<0.0050		0.0050	mg/L	30-APR-12	30-APR-12	R2358222
Vanadium (\	√)-Total	<0.0010		0.0010	mg/L	30-APR-12	30-APR-12	R2358222
Zinc (Zn)-To	otal	0.0363		0.0030	mg/L	30-APR-12	30-APR-12	R2358222
Zirconium (Z	Zr)-Total	<0.0040		0.0040	mg/L	30-APR-12	30-APR-12	R2358222

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Duplicate		E. Coli	DLM	L1140393-1
Duplicate		Sodium (Na)-Total	DLM	L1140393-1
Matrix Spike		Calcium (Ca)-Total	MS-B	L1140393-1
Matrix Spike		Magnesium (Mg)-Total	MS-B	L1140393-1
Matrix Spike		Silicon (Si)-Total	MS-B	L1140393-1
Matrix Spike		Sodium (Na)-Total	MS-B	L1140393-1
Matrix Spike		Strontium (Sr)-Total	MS-B	L1140393-1
Matrix Spike		Ammonia, Total (as N)	MS-B	1140393-1
Sample Parameter Qu Qualifier Descri	alifier key li	sted:		
DLM Detecti	on Limit Adjus	ted For Sample Matrix Effects		
MS-B Matrix	Spike recovery	could not be accurately calculated due	e to high analyte b	background in sample.
Test Method Reference	05.			
Al S Test Code	Matrix	Test Description	Method Refere	NDCO**
ALS TEST COUE	WIGUIA	Test Description		
ALK-SPEC-WT	Water	Speciated Alkalinity	EPA 310.2	
ANIONS-WT	Water	Anion Scan (IC)	EPA 300.0 (IC))
COLOUR-WT Apparent colour is dete	Water mined by anal	Colour ysis of the decanted sample using the	APHA 2120 platinum-cobalt c	olourimetric method.
EC-MF-WT A 100mL volume of san Method ID: WT-TM-120	Water nple is filtered 0	E. coli through a membrane, the membrane is	SM 9222D placed on mFC-	BCIG agar and incubated at @44.5–0.2°C for 24–2h.
EC-WT Water samples can be	Water measured dire	Conductivity ctly by immersing the conductivity cell i	APHA 2510 B nto the sample.	
ETL-SAR-CALC-WT	Water	Sodium Adsorption Ratio	Calculation	
ETL-SILICA-CALC-WT	Water	Calculate from SI-TOT-WT	EPA 200.8	
IONBALANCE-OP03-W1	Water	Detailed Ion Balance Calculation	APHA 1030E, 3	2330B, 2510A
MET-TOT-WT The concentration of mo MS.	Water etals is determ	Metal Scan-Total ined on an unfiltered aqueous sample.	EPA 200.8 The sample is d	igested with nitric acid and then analyzed directly by ICP-
NH3-WT Sample is measured cc colorimetrically.	Water lorimetrically.	Ammonia as N When sample is turbid a distillation step	EPA 350.1 o is required, sam	pple is distilled into a solution of boric acid and measured
P-ORTHO-LOW-WT	Water	Phosphorus-P (ortho)	APHA 4500-P	BE
PH-ALK-WT Water samples are ana	Water lyzed directly b	pH by a calibrated pH meter.	APHA 4500 H-	Electrode
REDOX-POTENTIAL-W1	Water	Redox Potential	APHA 2580	
SOLIDS-TDS-WT A well-mixed sample is 180–10°C for 1hr.	Water filtered though	Total Dissolved Solids glass fibres filter. A known volume of	APHA 2540C the filtrate is evap	porated and dried at 105–5°C overnight and then
TC-MF-WT A 100mL volume of san Method ID: WT-TM-120	Water nple is filtered 0	Total Coliforms through a membrane, the membrane is	SM 9222B placed on mENI	DO LES agar and incubated at 35–0.5°C for 24–2h.
TCB-MF-WT A 100mL volume of san Method ID: WT-TM-120	Water nple is filtered 0.	REG through a membrane, the membrane is	SM 9222B s placed on mENI	DO LES agar and incubated at 35–0.5°C for 24–2h.

Reference Information

 TURBIDITY-WT
 Water
 Turbidity
 APHA 2130 B

 Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

126536

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L1140393	3 Re	eport Date:	04-MAY-12	Pa	ge 1 of 10
Client:	LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K DAVE MORLOCK	2Y5						-
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
	Water							-
Batch	R2359956							
WG1465299 Alkalinity, T	-4 CRM lotal (as CaCO3)	WT-ALK-CRM	100.6		%		80-120	02-MAY-12
WG1465299 Alkalinity, T	-2 CVS otal (as CaCO3)		98.5		%		70-130	02-MAY-12
WG1465299 Alkalinity, T	-3 DUP otal (as CaCO3)	L1140393-1 237	238		mg/L	0.34	20	02-MAY-12
Alkalinity, B	icarbonate (as CaCO3)	236	236		mg/L	0.34	25	02-MAY-12
Alkalinity, C	arbonate (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	02-MAY-12
Alkalinity, H	lydroxide (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	02-MAY-12
WG1465299 Alkalinity, T	-1 MB otal (as CaCO3)		<10		mg/L		10	02-MAY-12
Alkalinity, B	icarbonate (as CaCO3)		<10		mg/L		10	02-MAY-12
Alkalinity, C	arbonate (as CaCO3)		<10		mg/L		10	02-MAY-12
Alkalinity, H	lydroxide (as CaCO3)		<10		mg/L		10	02-MAY-12
ANIONS-WT	Water							
Batch	R2359735							
WG1465702 Chloride	2-3 LCS		99.0		%		85-115	02-MAY-12
Bromide			105.0		%		85-115	02-MAY-12
Fluoride			98.5		%		85-115	02-MAY-12
Nitrite-N			92.2		%		85-115	02-MAY-12
Nitrate-N			98.6		%		85-115	02-MAY-12
Sulphate			101.1		%		85-115	02-MAY-12
WG1465702	2-4 LCSD	WG1465702-3	00		0/	0.040	05	00 1141/ 40
Bromido		99.0	99 102		70 0/	0.016	25	02-MAY-12
Eluoride		98.5	00		70 %	2.7	25	02-MAY-12
Nitrite-N		92.2	92		%	0.0	25	02-MAY-12
Nitrate-N		98.6	99		%	0.041	25	02-MAY-12
Sulphate		101.1	101		%	0.16	25	02-MAY-12
WG1465702	2-1 MB	10111			~~~/l	0.10	23	
Bromido			<2.0		mg/L		2	02-MAY-12
Eluorido			<0.10		mg/L		0.1	U2-MAY-12
Nitrito-N			<0.10		mg/⊑		0.1	$\frac{1}{12}$
Nitrate-N			<0.10		ma/L		0.1	02-MAV-12
					<u> </u>		~	

		Workorder: L1140393			eport Date: 04-	MAY-12	Page 2 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
ANIONS-WT	Water								
Batch R2359735 WG1465702-1 MB Sulphate			<2.0		mg/L		2	02-MAY-12	
COLOUR-WT	Water								
Batch R2357536 WG1463784-4 CRM Color, Apparent		WT-COLOUF	R-CRM 106.5		%		80-120	28-APR-12	
WG1463784-2 CVS Color, Apparent			97.6		%		80-120	28-APR-12	
WG1463784-3 DUP Color, Apparent		L1140393-1 <1.0	<1.0	RPD-NA	C.U.	N/A	20	28-APR-12	
WG1463784-1 MB Color, Apparent			<1.0		C.U.		1	28-APR-12	
EC-MF-WT	Water								
Batch R2357794 WG1463780-1 MB E. Coli			0		CFU/100mL		1	29-APR-12	
EC-WT	Water								
Batch R2358057 WG1464192-1 CVS Conductivity			99.4		%		90-110	30-APR-12	
WG1464192-4 DUP Conductivity		L1140393-1 987	986		umhos/cm	0.10	10	30-APR-12	
WG1464192-2 MB Conductivity			<3.0		umhos/cm		3	30-APR-12	
MET-TOT-WT	Water								
Batch R2358222 WG1464072-2 CVS									
Aluminum (Al)-Total			98.9		%		80-120	30-APR-12	
Antimony (Sb)- I otal			102.1		%		80-120	30-APR-12	
Arsenic (As)-Total			99.5		%		80-120	30-APR-12	
Barium (Ba)-Total			100.5		%		80-120	30-APR-12	
Bismuth (Bi)-Total			96.5		%		80-120	30-APR-12	
Boron (B)-Total			109.8		%		70-130	30-APR-12	
Cadmium (Cd)-Total			106.4		%		80-120	30-APR-12	
Calcium (Ca)-Total			95.3		%		80-120	30-APR-12	

		Workorder: L1140393			Report Date: (04-MAY-12	Page 3 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TOT-WT	Water								
Batch R235822	22								
WG1464072-2 CVS	5								
Chromium (Cr)- I otal			100.9		%		80-120	30-APR-12	
Cobalt (Co)-Total			98.4		%		80-120	30-APR-12	
Copper (Cu)-Total			100.5		%		80-120	30-APR-12	
Iron (Fe)-Total			97.5		%		70-130	30-APR-12	
Lead (Pb)-Total			102.2		%		80-120	30-APR-12	
Magnesium (Mg)-Tota	al		96.3		%		80-120	30-APR-12	
Manganese (Mn)-Tota	al		104.2		%		80-120	30-APR-12	
Molybdenum (Mo)-To	tal		100.9		%		90-110	30-APR-12	
Nickel (Ni)-Total			101.0		%		80-120	30-APR-12	
Phosphorus (P)-Total			99.1		%		70-130	30-APR-12	
Potassium (K)-Total			95.9		%		80-120	30-APR-12	
Selenium (Se)-Total			99.2		%		80-120	30-APR-12	
Silicon (Si)-Total			103.2		%		70-130	30-APR-12	
Silver (Ag)-Total			106.3		%		80-120	30-APR-12	
Sodium (Na)-Total			96.0		%		80-120	30-APR-12	
Strontium (Sr)-Total			100.9		%		80-120	30-APR-12	
Thallium (TI)-Total			106.9		%		80-120	30-APR-12	
Tin (Sn)-Total			100.1		%		70-130	30-APR-12	
Titanium (Ti)-Total			103.5		%		80-120	30-APR-12	
Tungsten (W)-Total			100.7		%		70-130	30-APR-12	
Uranium (U)-Total			101.8		%		80-120	30-APR-12	
Vanadium (V)-Total			100.6		%		80-120	30-APR-12	
Zinc (Zn)-Total			101.9		%		80-120	30-APR-12	
Zirconium (Zr)-Total			100.2		%		80-120	30-APR-12	
WG1464023-2 LCS	5								
Aluminum (Al)-Total			98.1		%		80-120	30-APR-12	
Antimony (Sb)-Total			89.8		%		70-130	30-APR-12	
Arsenic (As)-Total			98.5		%		70-130	30-APR-12	
Barium (Ba)-Total			93.6		%		70-130	30-APR-12	
Bismuth (Bi)-Total			101.1		%		70-130	30-APR-12	
Boron (B)-Total			104.8		%		70-130	30-APR-12	
Cadmium (Cd)-Total			100.3		%		70-130	30-APR-12	
Calcium (Ca)-Total			93.4		%		70-130	30-APR-12	
Chromium (Cr)-Total			95.5		%		70-130	30-APR-12	

		Workorder	: L114039	3	Report Date: ()4-MAY-12	Page 4 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TOT-WT	Water								
Batch R23582	222								
WG1464023-2 LC	S								
Cobalt (Co)-Total			95.9		%		70-130	30-APR-12	
Copper (Cu)-Total			96.2		%		70-130	30-APR-12	
Iron (Fe)-I otal			95.2		%		70-130	30-APR-12	
Lead (Pb)-Total			101.7		%		70-130	30-APR-12	
Magnesium (Mg)-To	otal		89.3		%		70-130	30-APR-12	
Manganese (Mn)-To	otal		98.6		%		70-130	30-APR-12	
Molybdenum (Mo)-T	otal		100.4		%		70-130	30-APR-12	
Nickel (Ni)-Total			96.3		%		70-130	30-APR-12	
Phosphorus (P)-Tota	al		100.6		%		70-130	30-APR-12	
Potassium (K)-Total			92.0		%		70-130	30-APR-12	
Selenium (Se)-Total			104.2		%		70-130	30-APR-12	
Silicon (Si)-Total			98.7		%		70-130	30-APR-12	
Silver (Ag)-Total			96.6		%		70-130	30-APR-12	
Sodium (Na)-Total			88.0		%		70-130	30-APR-12	
Strontium (Sr)-Total			101.9		%		70-130	30-APR-12	
Thallium (TI)-Total			103.4		%		70-130	30-APR-12	
Tin (Sn)-Total			95.5		%		70-130	30-APR-12	
Titanium (Ti)-Total			99.0		%		70-130	30-APR-12	
Tungsten (W)-Total			99.2		%		70-130	30-APR-12	
Uranium (U)-Total			100.8		%		70-130	30-APR-12	
Vanadium (V)-Total			97.1		%		70-130	30-APR-12	
Zinc (Zn)-Total			102.1		%		70-130	30-APR-12	
Zirconium (Zr)-Total			96.7		%		70-130	30-APR-12	
WG1464023-1 ME	3								
Aluminum (Al)-Total			<0.010		mg/L		0.01	30-APR-12	
Antimony (Sb)-Total			<0.0050		mg/L		0.005	30-APR-12	
Arsenic (As)-Total			<0.0010		mg/L		0.001	30-APR-12	
Barium (Ba)-Total			<0.010		mg/L		0.01	30-APR-12	
Bismuth (Bi)-Total			<0.0010		mg/L		0.001	30-APR-12	
Boron (B)-Total			<0.050		mg/L		0.05	30-APR-12	
Cadmium (Cd)-Total	l		<0.00009	90	mg/L		0.00009	30-APR-12	
Calcium (Ca)-Total			<0.50		mg/L		0.5	30-APR-12	
Chromium (Cr)-Tota	l		<0.00050)	mg/L		0.0005	30-APR-12	
Cobalt (Co)-Total			<0.00050)	mg/L		0.0005	30-APR-12	

		Workorder:	L1140393	3	Report Date: 0	4-MAY-12	Page 5 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TOT-WT	Water								
Batch R235822	22								
WG1464023-1 MB									
Copper (Cu)- I otal			<0.0010		mg/L		0.001	30-APR-12	
Iron (Fe)-Total			<0.050		mg/L		0.05	30-APR-12	
Lead (Pb)-Total			<0.0010		mg/L		0.001	30-APR-12	
Magnesium (Mg)-Tota	al		<0.50		mg/L		0.5	30-APR-12	
Manganese (Mn)-Tota	al		<0.0010		mg/L		0.001	30-APR-12	
Molybdenum (Mo)-To	tal		<0.0010		mg/L		0.001	30-APR-12	
Nickel (Ni)-Total			<0.0020		mg/L		0.002	30-APR-12	
Phosphorus (P)-Total			<0.050		mg/L		0.05	30-APR-12	
Potassium (K)-Total			<1.0		mg/L		1	30-APR-12	
Selenium (Se)-Total			<0.00040		mg/L		0.0004	30-APR-12	
Silicon (Si)-Total			<1.0		mg/L		1	30-APR-12	
Silver (Ag)-Total			<0.00010		mg/L		0.0001	30-APR-12	
Sodium (Na)-Total			<0.50		mg/L		0.5	30-APR-12	
Strontium (Sr)-Total			<0.0010		mg/L		0.001	30-APR-12	
Thallium (TI)-Total			<0.00030		mg/L		0.0003	30-APR-12	
Tin (Sn)-Total			<0.0010		mg/L		0.001	30-APR-12	
Titanium (Ti)-Total			<0.0020		mg/L		0.002	30-APR-12	
Tungsten (W)-Total			<0.010		mg/L		0.01	30-APR-12	
Uranium (U)-Total			<0.0050		mg/L		0.005	30-APR-12	
Vanadium (V)-Total			<0.0010		mg/L		0.001	30-APR-12	
Zinc (Zn)-Total			<0.0030		mg/L		0.003	30-APR-12	
Zirconium (Zr)-Total			<0.0040		mg/L		0.004	30-APR-12	
WG1464023-5 MS		WG1464023-3							
Aluminum (Al)-Total			101.1		%		70-130	30-APR-12	
Antimony (Sb)-Total			93.3		%		70-130	30-APR-12	
Arsenic (As)-Total			99.6		%		70-130	30-APR-12	
Barium (Ba)-Total			97.7		%		70-130	30-APR-12	
Bismuth (Bi)-Total			99.8		%		70-130	30-APR-12	
Boron (B)-Total			108.3		%		70-130	30-APR-12	
Cadmium (Cd)-Total			100.3		%		70-130	30-APR-12	
Calcium (Ca)-Total			N/A	MS-B	8 %		-	30-APR-12	
Chromium (Cr)-Total			98.1		%		70-130	30-APR-12	
Cobalt (Co)-Total			94.3		%		70-130	30-APR-12	
Copper (Cu)-Total			94.7		%		70-130	30-APR-12	

		Workorder:	Workorder: L1140393			4-MAY-12	Page 6 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-TOT-WT	Water								
Batch R2358222									
WG1464023-5 MS		WG1464023-3							
Iron (Fe)-Iotal			96.7		%		70-130	30-APR-12	
Lead (Pb)-Total			98.1		%		70-130	30-APR-12	
Magnesium (Mg)-Total			N/A	MS-B	%		-	30-APR-12	
Manganese (Mn)-Total			101.4		%		70-130	30-APR-12	
Molybdenum (Mo)-Tota			96.7		%		70-130	30-APR-12	
Nickel (Ni)-Total			94.1		%		70-130	30-APR-12	
Phosphorus (P)-Total			102.0		%		70-130	30-APR-12	
Potassium (K)-Total			87.8		%		70-130	30-APR-12	
Selenium (Se)-Total			98.2		%		70-130	30-APR-12	
Silicon (Si)-Total			N/A	MS-B	%		-	30-APR-12	
Silver (Ag)-Total			95.8		%		70-130	30-APR-12	
Sodium (Na)-Total			N/A	MS-B	%		-	30-APR-12	
Strontium (Sr)-Total			N/A	MS-B	%		-	30-APR-12	
Thallium (TI)-Total			99.3		%		70-130	30-APR-12	
Tin (Sn)-Total			96.8		%		70-130	30-APR-12	
Titanium (Ti)-Total			97.9		%		70-130	30-APR-12	
Tungsten (W)-Total			98.6		%		70-130	30-APR-12	
Uranium (U)-Total			101.6		%		70-130	30-APR-12	
Vanadium (V)-Total			100.7		%		70-130	30-APR-12	
Zinc (Zn)-Total			102.1		%		70-130	30-APR-12	
Zirconium (Zr)-Total			95.1		%		70-130	30-APR-12	
Batch R2358290									
WG1464639-2 CVS									
Beryllium (Be)-Total			107.5		%		80-120	01-MAY-12	
WG1464023-2 LCS									
Beryllium (Be)-Total			83.2		%		70-130	01-MAY-12	
WG1464023-1 MB Beryllium (Be)-Total			~0 0010		ma/l		0.001	01-MAY-12	
WG1464022-5 MS		WC1464022.2	10.0010		<u>9</u> , <u>–</u>		0.001	01-10141-12	
Beryllium (Be)-Total		WG1404023-3	75.2		%		70-130	01-MAY-12	
NH3-WT	Water								
Batch R2358391									
WG1464660-2 CVS			00 7		0/		05		
Ammonia, I otal (as N)			98.7		%ο		85-115	01-MAY-12	
WG1464660-1 MB									

		Workorder:	L114039	3 Re	eport Date: 04	4-MAY-12	Page 7 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
NH3-WT	Water								
Batch R2358391									
WG1464660-1 MB									
Ammonia, Total (as N)			<0.050		mg/L		0.05	01-MAY-12	
WG1464660-4 MS Ammonia, Total (as N)		L1139999-1	87.5		%		75-125	01-MAY-12	
WG1464660-6 MS Ammonia, Total (as N)		L1140294-4	N/A	MS-B	%		-	01-MAY-12	
WG1464660-8 MS		L1140770-2	04 E		0/		75 405		
P-ORTHO-LOW-WT	Water		84.5		70		75-125	01-MAY-12	
Batch R2358497									
WG1464751-5 DUP		L1140393-1							
Phosphate-P (ortho)		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	01-MAY-12	
WG1464751-2 LCS									
Phosphate-P (ortho)			94.4		%		80-120	01-MAY-12	
WG1464751-1 MB									
Phosphate-P (ortho)			<0.0030		mg/L		0.003	01-MAY-12	
WG1464751-4 MS Phosphate-P (ortho)		L1139954-3	75.0		%		70-130	01-MAY-12	
WG1464751-6 MS		L1140393-1							
Phosphate-P (ortho)			99.3		%		70-130	01-MAY-12	
PH-ALK-WT	Water								
Batch R2358054									
WG1464189-3 DUP		L1140393-1							
рн		7.89	7.89		pH units	0.0	20	30-APR-12	
WG1464189-1 LCS			7.04		nH unite		6074		
pri			7.04		pri unito		0.9-7.1	30-APR-12	
REDOX-POTENTIAL-WT	Water								
Batch R2358060									
WG1464509-1 DUP Redox Potential		L1140393-1 136	138		mV	1.5	25	30-APR-12	
SOLIDS-TDS-WT	Water								
Batch R2359004									
WG1464641-2 LCS									
Total Dissolved Solids			88.7		%		70-130	02-MAY-12	
WG1464641-1 MB			-20		mall		20	00 MAX (0	
I Utal DISSOIVED SOIIDS			<20		mg/∟		20	02-MAY-12	

		Workorder	: L114039	3	Report Date: 04-	MAY-12	Pa	ge 8 of 10
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TC-MF-WT	Water							
Batch R2357788 WG1463783-1 MB Total Coliforms	i		0		CFU/100mL		1	29-APR-12
TCB-MF-WT	Water							
Batch R2357788 WG1463783-1 MB Total Coliform Backgro	und		0		CFU/100mL		1	29-APR-12
TURBIDITY-WT	Water							
Batch R2357499 WG1463732-2 CVS Turbidity	1		101.0		%		85-115	28-APR-12
WG1463732-1 MB Turbidity			<0.10		NTU		0.1	28-APR-12

Workorder: L1140393

Report Date: 04-MAY-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1140393

Report Date: 04-MAY-12

Page 10 of 10

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests		·					
Redox Potential							
	1	27-APR-12 08:40	30-APR-12 18:02	0.25	81	hours	EHTR-FM
Legend & Qualifier Definition	ne:						

Legend & Qualifier Definitions:

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1140393 were received on 27-APR-12 17:09.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

a a fa a transferir a fa a	an an ann an Anna an Anna Anna Anna Ann	an an chairteach an tair		ere a sue a sur grup	in constant	1994 en el sete d'Angolante	economic fille concerne a succession and	, and a graphine inspection of a case of 20 canadomic approximation dealers for the constraint of the	er je verskolser av Zure	and wards and a	y and a literative standards. A	er (Parto andera	ى بەرسىرى روق بەرسىرى	·····	initia companya	ورو ود محمد ۲۰٫۰۰۰	27. .		1265	36
60 NORTHLAND	ROAD, UNI	т 1		1.91.42.00 (0.000 (0.000))	en stationen ander		hubdige 1981 Min of allowers of professionens. (F.F. Turk 1111 - 2004 page against by 								1				C of C # 00000	0
WATERLOO, ON	N2V 2B8	1.							/ AN			AL S		S RE	QUE!	ST F	ORN	I Pa	age of	
Findle: (519) 886-9	047	W. Westaal on oo			ALS)		Note: all TAT Quoted material is in business days which exclude				s	pecify date		Servi	ce req	ueste	d	2 day TAT (50%)		
Toll Free: 1-800-	668-9878	a var der some je strag	s	- 141 C	ar i sh		statutory holidays	and weekends. TAT samples rece av begin the next day	eived pa	st 3:00	рт		required	5 d	ay (reg	ular)		X	Next day TAT (100%)	-
COMPANY NAME	T	/	111	<u></u>			CDITED IN	Ty begin the next uny.						3-4	day (2	5%)			Same day TAT (200%)	
OFFICE		L	v_{ν}	/				Criteria on report YES NO	_					SIS REC	UEST				PLEASE INDICATE FILTERE	ED,
	Kitch	ens	-				Table 1 2		9	8									< (F, P, F/P)	
PROJECT MANAGER	Adva 1	1	P.2						1	3	<u> </u>	+	+				<u> </u>	┨───	SUBMISSION #:	
PROJECT # // A a	- RADON A	101	2100	````			ODWSOTH	، PwQO HER		and and						1			1111020	\mathbf{S}
PHONE -	<u> 1000 /</u>	<u>γς</u> Τεδχ	90	<u>v</u>					_	12									L114004	13
579 74	11. 313		5/19	. 74	1.54	12	REPORT	FORMAT/DISTRIBUTION		N.									ENTERED BY:	$\langle \mathcal{P} \rangle$
ACCOUNT #									ERS	N									DATE/TIME ENTERED:	IN I
QUOTATION #		PO #	# 217	CNZ	0		SELECT: PDF	AX BOTH	AIN	So									OT KULLIO IC	
		L.,	~0	10-1	0		EMAIL 1 _ dav			1à									×+10411214	1:20
SAMPLING INFORMATION Sample Date/Time Type I MATRIX			– EMAIL 2 В В											BIN # RSJY	-					
	Time (24b)	<u> </u>		ا ظ		Î 🗄			ER	1 2									- Unas	
Date (dd-mm-yy)	(hh:mm)	S S	GRA	WAT	SOIL	H	SAMPLE DESCR	IPTION TO APPEAR ON REPORT	MI	0									COMMENTS	LAB ID
2012-04-27	27 R'40 X Unter frigales Will - Un brack of			Will-unbrake	<u> </u>		<u> </u>									┥				
										\uparrow		1		+	-					+
												\square			1					+
······································	<u> </u>		_																h	+
		<u> </u>	<u> </u>						_											
	<u> </u>								-	1	I	I		I	I		l			
		<u> </u>	<u> </u>		1	†—	<u> </u>		╶╌┨╷╻╻		n i ki n ii ai						_			+
								<u> </u>	┥║			(H)								╂──┥
									- 🏢				, M , M , M <u>,</u>	M			_			╆╾╼┥
					ļ									- 0	, .	-	_		· · · · · · · · · · · · · · · · · · ·	1
					<u> </u>			······				L								
	<u> </u>		┣──	<u> </u>		<u> </u>		·····		 		ļ								
SPECIA	L AL INSTRUCTIO	NS/CO	I MMEN	TS	L	I		THE QUESTIONS BELOW MUST BE /	ANSWERE	D FORV	VATER	SAMP	ES (CHECK	Yes Of						
							Are any samples ta	ken from a regulated DW Syster	m?				Ŷ	es 🖬	No				FROZEN	MEAN
							If yes, an authorize	d drinking water COC MUST be	used fo	r this s	ubmi	ssion.		N/	Λ					TEMP
AMPLED BY:	1						Is the water sample	id intended to be potable for hu	uman co	nsump	tion?	_	<u>۱</u>	'es X	No 🗆 🔪			_	AMBIENT	1.7
	Thay	<u>ua</u>					DATE & TIME			<u> </u>				DATE	& TIME					TR
	= Th	a	is				DATE & TIME	RECEIVED AT LAB BY:	HK (PAT	& Thing	111	7		If yes add SHF	
otes	SAMPLE - Second consider a clouder ag		*1	- Marine - John & Marine and	en de participar e pa							e et Steamelie		-0.	Y1	+ / +	- 1	-12	1:09	\mathbf{W}^{-}
. Quote number must b	e provided to ei	nsure p	proper	pricing			2. TAT may vary deper Please contact the la	ident on complexity of analysis and l ab to confirm TATe	lab worki	oad at 1	time of	fsubm	ssion. 3. Ar	y know	n dr sus	pected	hazaro	s relat	ing to a sample must be noted	on the
and the second second second second second second	1	· · Peter and a strategy of a		· · · · · · · · · · · · · · · · · · ·		يعين والما المحاد		AND LO CONTRACTOR AND					i ch	ain of c	ustody i	n comn	nents s	ection.		

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 03-JUL-12 Report Date: 09-JUL-12 10:39 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1171217

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000145-400 127147

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters

WATER

Sampled By: K. THRAMS on 03-JUL-12 @ 07:00

CRITERIA REPORT

D.L.

Units

Criteria Specific Limits

STANDARDS

GUIDELINES

Qualifier

Result

WATER SUPPLY WELL - BEFORE TREATMENT SYSTEM

L1171217 CONTD.... Page 2 of 5 09-JUL-12 10:40:30

Batch

Analyzed

160-P0000145-400

L1171217-1

Matrix:

General Water Quality Package							
Ammonia, Total (as N)	<0.050	0.050	mg/L			04-JUL-12	R2392246
Anion Scan (IC)							
Chloride	131	2.0	ma/l		250	05-JUI -12	R2394317
Bromide	<0.10	0.10	mg/L			05-JUL-12	R2394317
Fluoride	<0.10	0.10	mg/L	1.5		05-JUL-12	R2394317
Nitrite-N	<0.10	0.10	mg/L	1		05-101-12	R2394317
Nitrate-N	8.49	0.10	mg/L	10		05-1111-12	R2394317
Sulphate	27.1	20	mg/L		500	05-101-12	R2394317
Silica	8.5	2.1	ma/l			06-JUI -12	112001011
Color, Apparent	1.0	1.0	C.U.		5	04-JUL-12	R2392972
Conductivity	1000	3.0	umhos/cm			03-JUL-12	R2391996
Detailed Ion Balance Calculation							
Ion Balance	117		%			07-1111-12	
Cation - Anion Balance	77		/0 %			07-1111-12	
	876		uS/cm			07-1111-12	
Conductivity % Difference	-13.4		0/cm			07-1111-12	
TDS (Calculated)	535		ma/l			07-1111-12	
Anion Sum	8 71		mg/L			07-1111-12	
Cation Sum	10.2		mo/L			07 11 12	
Saturation pH	7 15		пе/L ъН			07-1111-12	
	0.8		No Unit			07-1111-12	
Hardness (as CaCO3)	319				** 80-100	07-1111-12	
F. Coli	0			0	00-100		D0000405
	0	0	SF0/100mL	0		04-JUL-12	RZ392405
Metal Scan-Iotal	0.040						
Aluminum (Al)-Total	<0.010	0.010	mg/L	0.000	0.1	05-JUL-12	R2393589
Antimony (Sb)-Total	<0.0050	0.0050	mg/L	0.006		05-JUL-12	R2393589
Arsenic (As)-Total	<0.0010	0.0010	mg/L	0.025		05-JUL-12	R2393589
Barium (Ba)-Total	0.084	0.010	mg/L	1		05-JUL-12	R2393589
Beryllium (Be)-Total	<0.0010	0.0010	mg/L			05-JUL-12	R2393589
Bismuth (Bi)- I otal	<0.0010	0.0010	mg/L	_		05-JUL-12	R2393589
Boron (B)-Total	<0.050	0.050	mg/L	5		05-JUL-12	R2393589
Cadmium (Cd)-Total	<0.000090	0.000090) mg/L	0.005		05-JUL-12	R2393589
Calcium (Ca)-Total	89.9	0.50	mg/L			05-JUL-12	R2393589
Chromium (Cr)-Total	0.00050	0.00050	mg/L	0.05		05-JUL-12	R2393589
Cobalt (Co)-Total	<0.00050	0.00050	mg/L			05-JUL-12	R2393589
Copper (Cu)-Total	0.0162	0.0010	mg/L		1	05-JUL-12	R2393589
Iron (Fe)-Total	<0.050	0.050	mg/L		0.3	05-JUL-12	R2393589
Lead (Pb)-Total	0.0035	0.0010	mg/L	0.01		05-JUL-12	R2393589
Magnesium (Mg)-Total	23.0	0.50	mg/L			05-JUL-12	R2393589
Manganese (Mn)-Total	<0.0010	0.0010	mg/L		0.05	05-JUL-12	R2393589
Molybdenum (Mo)-Total	<0.0010	0.0010	mg/L			05-JUL-12	R2393589
Nickel (Ni)-Total	<0.0020	0.0020	mg/L			05-JUL-12	R2393589
Phosphorus (P)-Total	<0.050	0.050	mg/L			05-JUL-12	R2393589
Potassium (K)-Total	1.3	1.0	mg/L			05-JUL-12	R2393589
Selenium (Se)-Total	<0.00040	0.00040	mg/L	0.01		05-JUL-12	R2393589
Silicon (Si)-Total	4.0	1.0	mg/L			05-JUL-12	R2393589

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

160-P0000145-400

CRITERIA REPORT

L1171217 CONTD.... Page 3 of 5 09-JUL-12 10:40:30

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Sp	ecific Limits	Analyzed	Batch
11171217-1 WATER SUPPLY WELL - BE	FORE TREATM	ENT SYST	ЕM					
Sampled By: K THRAMS on 03-IIII -12 @								
Matrix: WATER	07.00				STANDARDS	GUIDELINES		
Mault. WATER					STANDARDS			
General Water Quality Package								
Metal Scan-Total								
Silver (Ag)-Total	<0.00010		0.00010	mg/L			05-JUL-12	R2393589
Sodium (Na)-Total	86.0	DLM	5.0	mg/L	** 20	200	05-JUL-12	R2393589
Strontium (Sr)-Total	0.219		0.0010	mg/L			05-JUL-12	R2393589
Thallium (TI)-Total	<0.00030		0.00030	mg/L			05-JUL-12	R2393589
Tin (Sn)-Total	<0.0010		0.0010	mg/L			05-JUL-12	R2393589
Titanium (Ti)-Total	<0.0020		0.0020	mg/L			05-JUL-12	R2393589
Tungsten (W)-Total	<0.010		0.010	mg/L			05-JUL-12	R2393589
Uranium (U)-Total	<0.0050		0.0050	mg/L	0.02		05-JUL-12	R2393589
Vanadium (V)-Total	<0.0010		0.0010	mg/L		F	05-JUL-12	R2393589
Zinc (Zn)-Total	<0.0372		0.0030	mg/L		5	05-JUL-12	R2393589
Σ incontain (Σ)-rotai	<0.0040		0.0040	IIIg/∟			00-001-12	R2393309
Phosphate-P (ortho)	<0.0030		0.0030	mg/L			06-JUL-12	R2393724
I otal Coliform Background	0		0	CFU/100mL	-		04-JUL-12	R2392404
Redox Potential	199		-1000	mV			03-JUL-12	R2391465
Sodium Adsorption Ratio	2.09		0.030	No Unit			09-JUL-12	
Total Coliforms	0		0	CFU/100mL	. 0		04-JUL-12	R2392404
Total Dissolved Solids	528		20	mg/L		** 500	07-JUL-12	R2394331
Turbidity	<0.10		0.10	NTU		5	04-JUL-12	R2392482
На	7.98		0.10	pH units		6.5-8.5	03-JUL-12	R2391994
Individual Analytes								
Speciated Alkalinity								
Alkalinity, Total (as CaCO3)	233		10	ma/l		30-500	06-1111-12	R2393769
Alkalinity, Bicarbonate (as	230		10	ma/L			06-JUL-12	R2393769
CaCO3)			-					
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L			06-JUL-12	R2393769
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L			06-JUL-12	R2393769
							l i	

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

Reference Information

160-P0000145-400

Sample Parameter Qualifier key listed:

Qualifier D	Description			
DLM D	Detection Limit A	djusted For Sample Matrix Ef	fects	
Methods Listed	(if applicable):			
ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
ALK-SPEC-WT	Water	Speciated Alkalinity		EPA 310.2
ANIONS-WT	Water	Anion Scan (IC)		EPA 300.0 (IC)
COLOUR-WT	Water	Colour		APHA 2120
Apparent colour EC-MF-WT	is determined by Water	y analysis of the decanted sa E. coli	mple using the platinum-cobalt colourimetric m	ethod. SM 9222D
A 100mL volume Method ID: WT-	e of sample is fill TM-1200	tered through a membrane, th	ne membrane is placed on mFC-BCIG agar and	d incubated at @44.5-0.2°C for 24-2h.
EC-WT	Water	Conductivity		APHA 2510 B
Water samples	can be measured T Water	d directly by immersing the co Sodium Adsorption Rat	onductivity cell into the sample. io	Calculation
ETL-SILICA-CALC-	WT Water	Calculate from SI-TOT-	WT	EPA 200.8
IONBALANCE-OPC	3-WT Water	Detailed Ion Balance C	alculation	APHA 1030E, 2330B, 2510A
MET-TOT-WT	Water	Metal Scan-Total		EPA 200.8
The concentration MS.	on of metals is de	etermined on an unfiltered ac	ueous sample. The sample is digested with nit	tric acid and then analyzed directly by ICP-
NH3-WT	Water	Ammonia as N		EPA 350.1
Sample is meas colorimetrically.	ured colorimetric	cally. When sample is turbid a	a distillation step is required, sample is distilled	into a solution of boric acid and measured
P-ORTHO-LOW-W	T Water	Phosphorus-P (ortho)		APHA 4500-P B E
PH-ALK-WT	Water	рН		APHA 4500 H-Electrode
Water samples	are analvzed dire	ectly by a calibrated pH mete	r.	
REDOX-POTENTIA	L-WT Water	Redox Potential		APHA 2580
SOLIDS-TDS-WT	Water	Total Dissolved Solids		APHA 2540C
A well-mixed sai 180–10°C for 1h	mple is filtered th nr.	hough glass fibres filter. A kn	own volume of the filtrate is evaporated and dri	ed at 105–5°C overnight and then
TC-MF-WT	Water	Total Coliforms		SM 9222B
A 100mL volume Method ID: WT-	e of sample is filt TM-1200	tered through a membrane, tl	ne membrane is placed on mENDO LES agar a	and incubated at 35–0.5°C for 24–2h.
TCB-MF-WT	Water	REG		SM 9222B
A 100mL volume Method ID: WT-	e of sample is fill TM-1200.	tered through a membrane, tl	ne membrane is placed on mENDO LES agar a	and incubated at 35–0.5°C for 24–2h.
TURBIDITY-WT	Water	Turbidity		APHA 2130 B
Sample result is by a standard re	based on a com	nparison of the intensity of the same condition	e light scattered by the sample under defined cons. Sample readings are obtained from a Nephe	onditions with the intensity of light scattered elometer.
			Laboratory Methods employed follow in generally based on nationally or interna	-house procedures, which are tionally accepted methodologies.
Chain of Custor	dy numbers:			
127147				
The last two let	ters of the above	e test code(s) indicate the lab	oratory that performed analytical analysis for the	at test. Refer to the list below:
Laboratory De	finition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT		ALS ENVIRONMENTAL - W	ATERLOO,	

ONTARIO, CANADA

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of criteria limits is provided as is without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Client:

Contact:

Quality Control Report

Workorder: L1171217 Report Date: 09-JUL-12 Page 1 of 11 LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water							
Batch R2393	769							
WG1502538-4 Cl Alkalinity, Total (as	RM CaCO3)	WT-ALK-CR	M 91.4		%		80-120	06-JUL-12
WG1502538-2 C Alkalinity, Total (as	VS CaCO3)		96.1		%		70-130	06-JUL-12
WG1502538-3 DI Alkalinity, Total (as	U P CaCO3)	L1170591-1 218	217		mg/L	0.6	20	06-JUL-12
Alkalinity, Bicarbona	ate (as CaCO3)	216	214		mg/L	0.6	25	06-JUL-12
Alkalinity, Carbonat	e (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	06-JUL-12
Alkalinity, Hydroxide	e (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	06-JUL-12
WG1502538-1 M	В							
Alkalinity, Total (as	CaCO3)		<10		mg/L		10	06-JUL-12
Alkalinity, Bicarbona	ate (as CaCO3)		<10		mg/L		10	06-JUL-12
Alkalinity, Carbonat	e (as CaCO3)		<10		mg/L		10	06-JUL-12
Alkalinity, Hydroxide	e (as CaCO3)		<10		mg/L		10	06-JUL-12
ANIONS-WT	Water							
Batch R2394	317							
WG1502432-6 DI Chloride	UP	L1171217-1 131	130		mg/L	0.3	20	05-JUL-12
Bromide		<0.10	<0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
Fluoride		<0.10	<0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
Nitrate-N		8.49	8.47		mg/L	0.2	20	05-JUL-12
Sulphate		27.1	27.0		mg/L	0.3	20	05-JUL-12
WG1502432-3 LO	cs		95.6		%		85-115	05- -12
Bromide			92.6		%		85-115	05-111-12
Fluoride			96.0		%		85-115	05-111-12
Nitrite-N			92.4		%		85-115	05-111-12
Nitrate-N			93.4		%		85-115	05-111-12
Sulphate			96.9		%		85-115	05-111-12
WG1502432-4 L(CSD	WG1502432	·3		0/	0.0	05	05 111 40
Bromido		90.0 02 6	90.0 02.0		70 0/	0.0	20 25	05-JUL-12
Eluorido		92.0 06.0	3 3.∠		/0 0/.	0.6	25	05-JUL-12
		90.0	90.0		/0	0.2	25	05-JUL-12
INITITE-IN		92.4	93.2		70	0.9	25	05-JUL-12

Workorder: L1171217 Report Date: 09-JUL-12 Page 2 of 11

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5

Contact: DAVE MORLOCK

Test	M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-WT	v	Water							
Batch R2394	317								
WG1502432-4 LO Nitrate-N	CSD		WG1502432-3 93.4	93.6		%	0.1	25	05-JUL-12
Sulphate			96.9	96.8		%	0.0	25	05-JUL-12
WG1502432-1 M Chloride	B			<2.0		mg/L		2	05-JUL-12
Bromide				<0.10		mg/L		0.1	05-JUL-12
Fluoride				<0.10		mg/L		0.1	05-JUL-12
Nitrite-N				<0.10		mg/L		0.1	05-JUL-12
Nitrate-N				<0.10		mg/L		0.1	05-JUL-12
Sulphate				<2.0		mg/L		2	05-JUL-12
COLOUR-WT		Water							
Batch R2392 WG1500871-2 C	2972 VS								
Color, Apparent				99.8		%		80-120	04-JUL-12
WG1500871-3 DI Color, Apparent	UP		L1171217-1 1.0	<1.0	RPD-NA	C.U.	N/A	20	04-JUL-12
WG1500871-1 MB Color, Apparent				<1.0		C.U.		1	04-JUL-12
EC-MF-WT	v	Water							
Batch R2392	2405								
WG1500489-2 D E. Coli	UP		L1171196-1 0	0		CFU/100mL	0.0	50	04-JUL-12
WG1500489-3 D E. Coli	UP		L1171194-1 0	0		CFU/100mL	0.0	50	04-JUL-12
WG1500489-1 M E. Coli	B			0		CFU/100mL		1	04-JUL-12
WG1500489-4 M E. Coli	В			0		CFU/100mL		1	04-JUL-12
EC-WT	v	Water							
Batch R2391 WG1500150-1 C ^V Conductivity	1996 VS			99.3		%		90-110	03-JUJ -12
WG1500150-3 D Conductivity	UP		L1171039-1 249	248		umhos/cm	0.4	10	03-JUL-12
WG1500150-4 D Conductivity	UP		L1171039-15 63.0	60.0		umhos/cm	4.9	10	03-JUL-12
WG1500150-5 D	UP		L1171205-2						

Workorder: L1171217 Report Date: 09-JUL-12 Page 3 of 11

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5

Contact: DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WT	Water							
Batch R2391996								
WG1500150-5 DUP Conductivity		L1171205-2 61.0	61.0		umhos/cm	0.0	10	03-JUL-12
WG1500150-2 MB Conductivity			<3.0		umhos/cm		3	03-JUL-12
MET-TOT-WT	Water							
Batch R2393589								
WG1501577-2 CVS								
Aluminum (Al)-Total			98.7		%		80-120	05-JUL-12
Antimony (Sb)-Total			99.7		%		80-120	05-JUL-12
Arsenic (As)-Total			96.0		%		80-120	05-JUL-12
Barium (Ba)-Total			98.2		%		80-120	05-JUL-12
Beryllium (Be)-Total			103.8		%		80-120	05-JUL-12
Bismuth (Bi)-Total			89.0		%		80-120	05-JUL-12
Boron (B)-Total			104.6		%		70-130	05-JUL-12
Cadmium (Cd)-Total			103.2		%		80-120	05-JUL-12
Calcium (Ca)-Total			96.6		%		80-120	05-JUL-12
Chromium (Cr)-Total			98.7		%		80-120	05-JUL-12
Cobalt (Co)-Total			96.8		%		80-120	05-JUL-12
Copper (Cu)-Total			97.5		%		80-120	05-JUL-12
Iron (Fe)-Total			95.8		%		70-130	05-JUL-12
Lead (Pb)-Total			102.1		%		80-120	05-JUL-12
Magnesium (Mg)-Total			101.1		%		80-120	05-JUL-12
Manganese (Mn)-Total			99.7		%		80-120	05-JUL-12
Molybdenum (Mo)-Total			95.4		%		90-110	05-JUL-12
Nickel (Ni)-Total			99.4		%		80-120	05-JUL-12
Phosphorus (P)-Total			98.1		%		70-130	05-JUL-12
Potassium (K)-Total			97.0		%		80-120	05-JUL-12
Selenium (Se)-Total			95.2		%		80-120	05-JUL-12
Silicon (Si)-Total			98.6		%		70-130	05-JUL-12
Silver (Ag)-Total			94.6		%		80-120	05-JUL-12
Sodium (Na)-Total			98.3		%		80-120	05-JUL-12
Strontium (Sr)-Total			96.9		%		80-120	05-JUL-12
Thallium (TI)-Total			103.5		%		80-120	05-JUL-12
Tin (Sn)-Total			99.6		%		70-130	05-JUL-12
Titanium (Ti)-Total			98.5		%		80-120	05-JUL-12

Workorder: L1171217

Report Date: 09-JUL-12

Page 4 of 11

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R2393589								
WG1501577-2 CVS			00.4		0/_		70.420	
Liranium (LI)-Total			99.4 99.4		%		70-130 90 120	05-JUL-12
Vanadium (V)-Total			97 1		%		80 120	05-JUL-12
Zinc (Zn)-Total			98.5		%		80-120	05-111-12
Zirconium (Zr)-Total			95.7		%		80-120	05-JUL-12
WG1500720-4 DUP		WG1500720.	.3		70		00-120	03-301-12
Aluminum (Al)-Total		<0.10	- 3 <0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
Antimony (Sb)-Total		<0.050	<0.050	RPD-NA	mg/L	N/A	20	05-JUL-12
Arsenic (As)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-JUL-12
Barium (Ba)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
Beryllium (Be)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-JUL-12
Bismuth (Bi)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-JUL-12
Boron (B)-Total		15.2	16.5		mg/L	8.4	20	05-JUL-12
Cadmium (Cd)-Total		<0.00090	<0.00090	RPD-NA	mg/L	N/A	20	05-JUL-12
Calcium (Ca)-Total		5.0	5.3		mg/L	4.8	20	05-JUL-12
Chromium (Cr)-Total		0.0424	0.0460		mg/L	8.2	20	05-JUL-12
Cobalt (Co)-Total		0.0163	0.0166		mg/L	1.9	20	05-JUL-12
Copper (Cu)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-JUL-12
Iron (Fe)-Total		20.7	22.1		mg/L	6.5	20	05-JUL-12
Lead (Pb)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-JUL-12
Magnesium (Mg)-Total		<5.0	<5.0	RPD-NA	mg/L	N/A	20	05-JUL-12
Manganese (Mn)-Total		0.209	0.229		mg/L	9.4	20	05-JUL-12
Molybdenum (Mo)-Total		0.138	0.147		mg/L	6.1	20	05-JUL-12
Nickel (Ni)-Total		0.280	0.300		mg/L	6.7	20	05-JUL-12
Phosphorus (P)-Total		9.30	10.0		mg/L	7.3	20	05-JUL-12
Potassium (K)-Total		<10	<10	RPD-NA	mg/L	N/A	20	05-JUL-12
Selenium (Se)-Total		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	05-JUL-12
Silicon (Si)-Total		<10	<10	RPD-NA	mg/L	N/A	20	05-JUL-12
Silver (Ag)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-JUL-12
Sodium (Na)-Total		2400	2430		mg/L	1.0	20	05-JUL-12
Strontium (Sr)-Total		0.021	0.022		mg/L	5.2	20	05-JUL-12
Thallium (TI)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	05-JUL-12
Tin (Sn)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	05-JUL-12

Workorder: L1171217

Report Date: 09-JUL-12

Page 5 of 11

LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 DAVE MORLOCK

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R2393589								
WG1500720-4 DUP Titanium (Ti)-Total		WG1500720-3 0.020	0.023		mg/L	14	20	05-JUL-12
Tungsten (W)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
Uranium (U)-Total		<0.050	<0.050	RPD-NA	mg/L	N/A	20	05-JUL-12
Vanadium (V)-Total		0.089	0.093		mg/L	4.8	20	05-JUL-12
Zinc (Zn)-Total		0.261	0.278		mg/L	6.3	20	05-JUL-12
Zirconium (Zr)-Total		<0.040	<0.040	RPD-NA	mg/L	N/A	20	05-JUL-12
WG1500720-2 LCS Aluminum (Al)-Total			108.9		%		80-120	05- 11 11 - 12
Antimony (Sb)-Total			93.9		%		70-130	05-1111-12
Arsenic (As)-Total			101.1		%		70-130	05-101-12
Barium (Ba)-Total			100.1		%		70-130	05-JUL-12
Beryllium (Be)-Total			95.6		%		70-130	05-JUL-12
Bismuth (Bi)-Total			95.0		%		70-130	05-JUL-12
Boron (B)-Total			95.9		%		70-130	05-JUL-12
Cadmium (Cd)-Total			98.4		%		70-130	05-JUL-12
Calcium (Ca)-Total			100.3		%		70-130	05-JUL-12
Chromium (Cr)-Total			100.1		%		70-130	05-JUL-12
Cobalt (Co)-Total			94.4		%		70-130	05-JUL-12
Copper (Cu)-Total			96.2		%		70-130	05-JUL-12
Iron (Fe)-Total			99.5		%		70-130	05-JUL-12
Lead (Pb)-Total			96.8		%		70-130	05-JUL-12
Magnesium (Mg)-Total			107.4		%		70-130	05-JUL-12
Manganese (Mn)-Total			97.7		%		70-130	05-JUL-12
Molybdenum (Mo)-Total			97.8		%		70-130	05-JUL-12
Nickel (Ni)-Total			96.5		%		70-130	05-JUL-12
Phosphorus (P)-Total			111.9		%		70-130	05-JUL-12
Potassium (K)-Total			101.7		%		70-130	05-JUL-12
Selenium (Se)-Total			96.4		%		70-130	05-JUL-12
Silicon (Si)-Total			108.1		%		70-130	05-JUL-12
Silver (Ag)-Total			99.8		%		70-130	05-JUL-12
Sodium (Na)-Total			104.4		%		70-130	05-JUL-12
Strontium (Sr)-Total			95.1		%		70-130	05-JUL-12
Thallium (TI)-Total			96.8		%		70-130	05-JUL-12

Workorder: L1171217

Report Date: 09-JUL-12

Page 6 of 11

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R2393589								
WG1500720-2 LCS Tip (Sp)-Total			97 1		%		70 120	05 1111 12
Titanium (Ti)-Total			100.8		%		70-130	05-JUL-12
Tungsten (W)-Total			98.1		%		70-130	05-001-12
Uranium (U)-Total			93.3		%		70-130	05-101-12
Vanadium (V)-Total			100.3		%		70-130	05-1111-12
Zinc (Zn)-Total			99.0		%		70-130	05-101-12
Zirconium (Zr)-Total			92.4		%		70-130	05-1111-12
WG1500720-1 MB							10 100	0000212
Aluminum (Al)-Total			<0.010		mg/L		0.01	05-JUL-12
Antimony (Sb)-Total			<0.0050		mg/L		0.005	05-JUL-12
Arsenic (As)-Total			<0.0010		mg/L		0.001	05-JUL-12
Barium (Ba)-Total			<0.010		mg/L		0.01	05-JUL-12
Beryllium (Be)-Total			<0.0010		mg/L		0.001	05-JUL-12
Bismuth (Bi)-Total			<0.0010		mg/L		0.001	05-JUL-12
Boron (B)-Total			<0.050		mg/L		0.05	05-JUL-12
Cadmium (Cd)-Total			<0.000090		mg/L		0.00009	05-JUL-12
Calcium (Ca)-Total			<0.50		mg/L		0.5	05-JUL-12
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	05-JUL-12
Cobalt (Co)-Total			<0.00050		mg/L		0.0005	05-JUL-12
Copper (Cu)-Total			<0.0010		mg/L		0.001	05-JUL-12
Iron (Fe)-Total			<0.050		mg/L		0.05	05-JUL-12
Lead (Pb)-Total			<0.0010		mg/L		0.001	05-JUL-12
Magnesium (Mg)-Total			<0.50		mg/L		0.5	05-JUL-12
Manganese (Mn)-Total			<0.0010		mg/L		0.001	05-JUL-12
Molybdenum (Mo)-Total			<0.0010		mg/L		0.001	05-JUL-12
Nickel (Ni)-Total			<0.0020		mg/L		0.002	05-JUL-12
Phosphorus (P)-Total			<0.050		mg/L		0.05	05-JUL-12
Potassium (K)-Total			<1.0		mg/L		1	05-JUL-12
Selenium (Se)-Total			<0.00040		mg/L		0.0004	05-JUL-12
Silicon (Si)-Total			<1.0		mg/L		1	05-JUL-12
Sodium (Na)-Total			<0.50		mg/L		0.5	05-JUL-12
Strontium (Sr)-Total			<0.0010		mg/L		0.001	05-JUL-12
Thallium (TI)-Total			<0.00030		mg/L		0.0003	05-JUL-12
Tin (Sn)-Total			<0.0010		mg/L		0.001	05-JUL-12

Workorder: L1171217

Report Date: 09-JUL-12

Page 7 of 11

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R2393589								
WG1500720-1 MB Titanium (Ti)-Total			~0.0020		ma/l		0.002	05 11 12
Tungsten (W)-Total			<0.0020		mg/L		0.002	05-JUL-12
Uranium (U)-Total			<0.0050		mg/L		0.005	05-101-12
Vanadium (V)-Total			<0.0010		mg/L		0.001	05-101-12
Zinc (Zn)-Total			< 0.0030		ma/L		0.003	05-111-12
Zirconium (Zr)-Total			<0.0040		mg/L		0.004	05-101-12
WG1500720-5 MS		WG1500720-3			0			
Antimony (Sb)-Total			105.5		%		70-130	05-JUL-12
Arsenic (As)-Total			104.7		%		70-130	05-JUL-12
Barium (Ba)-Total			109.7		%		70-130	05-JUL-12
Beryllium (Be)-Total			96.1		%		70-130	05-JUL-12
Bismuth (Bi)-Total			105.0		%		70-130	05-JUL-12
Boron (B)-Total			N/A	MS-B	%		-	05-JUL-12
Cadmium (Cd)-Total			97.8		%		70-130	05-JUL-12
Calcium (Ca)-Total			101.3		%		70-130	05-JUL-12
Chromium (Cr)-Total			102.3		%		70-130	05-JUL-12
Cobalt (Co)-Total			97.0		%		70-130	05-JUL-12
Copper (Cu)-Total			99.6		%		70-130	05-JUL-12
Iron (Fe)-Total			N/A	MS-B	%		-	05-JUL-12
Lead (Pb)-Total			97.2		%		70-130	05-JUL-12
Magnesium (Mg)-Total			113.6		%		70-130	05-JUL-12
Manganese (Mn)-Total			N/A	MS-B	%		-	05-JUL-12
Molybdenum (Mo)-Total			N/A	MS-B	%		-	05-JUL-12
Nickel (Ni)-Total			N/A	MS-B	%		-	05-JUL-12
Phosphorus (P)-Total			N/A	MS-B	%		-	05-JUL-12
Selenium (Se)-Total			95.3		%		70-130	05-JUL-12
Silver (Ag)-Total			91.7		%		70-130	05-JUL-12
Sodium (Na)-Total			N/A	MS-B	%		-	05-JUL-12
Strontium (Sr)-Total			95.7		%		70-130	05-JUL-12
Thallium (TI)-Total			94.0		%		70-130	05-JUL-12
Tin (Sn)-Total			99.5		%		70-130	05-JUL-12
Titanium (Ti)-Total			101.1		%		70-130	05-JUL-12
Tungsten (W)-Total			99.6		%		70-130	05-JUL-12
Uranium (U)-Total			96.6		%		70-130	05-JUL-12

Workorder: L1171217 Report Date: 09-JUL-12 Page 8 of 11 LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 DAVE MORLOCK Contact: Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TOT-WT Water Batch R2393589 WG1500720-5 MS WG1500720-3 Vanadium (V)-Total 112.1 % 70-130 05-JUL-12 Zinc (Zn)-Total N/A MS-B % 05-JUL-12 91.0 Zirconium (Zr)-Total % 70-130 05-JUL-12 NH3-WT Water Batch R2392246 WG1500874-2 CVS Ammonia, Total (as N) 102.1 % 85-115 04-JUL-12 WG1500874-3 DUP L1169690-1 Ammonia, Total (as N) 1.93 1.74 mg/L 10 20 04-JUL-12 WG1500874-4 DUP L1170394-1 Ammonia, Total (as N) 17.5 18.2 mg/L 3.5 20 04-JUL-12 WG1500874-5 DUP L1170591-1 Ammonia, Total (as N) < 0.050 < 0.050 **RPD-NA** mg/L N/A 20 04-JUL-12 WG1500874-1 MB Ammonia, Total (as N) < 0.050 mg/L 0.05 04-JUL-12 WG1500874-6 MS L1170591-1 Ammonia, Total (as N) 83.2 % 75-125 04-JUL-12 P-ORTHO-LOW-WT Water R2393724 Batch WG1502673-3 DUP L1171205-1 < 0.0030 Phosphate-P (ortho) < 0.0030 **RPD-NA** mg/L N/A 20 06-JUL-12 WG1502673-2 LCS 96.2 Phosphate-P (ortho) % 80-120 06-JUL-12 WG1502673-1 MB Phosphate-P (ortho) < 0.0030 mg/L 0.003 06-JUL-12 WG1502673-4 MS L1171205-1 Phosphate-P (ortho) 89.5 % 06-JUL-12 70-130 PH-ALK-WT Water Batch R2391994 WG1500146-2 DUP L1170591-1 pH units pН 8.07 8.12 0.6 20 03-JUL-12 WG1500146-1 LCS 6.97 pН pH units 6.9-7.1 03-JUL-12 **REDOX-POTENTIAL-WT** Water

		Workorder:	L117121	17	Report Date: 09-	Page 9 of 11			
Client: LVM 353 KITC	INC. BRIDGE ST. E. CHENER ON N2K	2Y5							
	Matrix	Poforonco	Posult	Qualifier	Unite	PPD	Limit	Analyzed	
	Watita	Reference	Result	Quaimer	onns	RFD	Liiiit	Anaryzeu	
REDOX-POTENTIAL-V	NT Water								
WG1500136-1 D Redox Potential	UP	L1170967-1 190	209		mV	9.5	25	03-JUL-12	
SOLIDS-TDS-WT	Water								
Batch R2394	4331								
WG1502699-3 D Total Dissolved Sol	UP lids	L1173858-2 184	172		mg/L	6.7	20	07-JUL-12	
WG1502699-4 D Total Dissolved Sol	UP lids	L1173858-7 122	122		mg/L	0.0	20	07-JUL-12	
WG1502699-5 D Total Dissolved Sol	UP lids	L1173858-9 24	20		mg/L	18	20	07-JUL-12	
WG1502699-2 Lo Total Dissolved Sol	CS lids		91.3		%		85-115	07-JUL-12	
WG1502699-1 M Total Dissolved Sol	I B lids		<20		mg/L		20	07-JUL-12	
TC-MF-WT	Water								
Batch R2392	2404	1 4 4 7 4 4 0 6 2							
Total Coliforms	UF	0	0		CFU/100mL	0.0	50	04-JUL-12	
WG1500486-3 D Total Coliforms	UP	L1171194-2 0	0		CFU/100mL	0.0	50	04-JUL-12	
WG1500486-1 M Total Coliforms	IB		0		CFU/100mL		1	04-JUL-12	
WG1500486-4 M Total Coliforms	IB		0		CFU/100mL		1	04-JUL-12	
TCB-MF-WT	Water								
Batch R2392	2404								
WG1500486-2 D Total Coliform Bacl	UP kground	L1171196-2 0	0		CFU/100mL	0.0	50	04-JUL-12	
WG1500486-3 D Total Coliform Bacl	UP kground	L1171194-2 0	0		CFU/100mL	0.0	50	04-JUL-12	
WG1500486-1 M Total Coliform Bac	I B kground		0		CFU/100mL		1	04-JUL-12	
WG1500486-4 M Total Coliform Bac	I B kground		0		CFU/100mL		1	04-JUL-12	
TURBIDITY-WT	Water								

			Workorder:	L1171217		Report Date:	09-JUL-12		Page 10 of 11
Client:	LVM INC. 353 BRID KITCHEN	GE ST. E. IER ON N2K 2Y!	5						
Contact:	DAVE MC	ORLOCK	-						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-WT		Water							
Batch	R2392482								
WG1501216-2 Turbidity	2 CVS			100.0		%		85-115	04-JUL-12
WG1501216-3	B DUP		L1171217-1						
Turbidity			<0.10	<0.10	RPD-NA	NTU	N/A	20	04-JUL-12
WG1501216- 1 Turbidity	I MB			<0.10		NTU		0.1	04-JUL-12

Workorder: L1171217 Report Date: 09-JUL-12

Client:	LVM INC.
	353 BRIDGE ST. E.
	KITCHENER ON N2K 2Y5
Contact:	DAVE MORLOCK

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLM	Detection Limit Adjusted For Sample Matrix Effects
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

an pangangangan pangangan sebes		t with over cult for each		e a stand at the			an a	angunan mana sanyar ini mananiningi ana ang mara	ite - 16 the row bridding room	i ga a sa		para anti-	a na an					ana in service serv	an aga ang san sa sa sa	12	714	7
60 NORTHLAND	ROAD, UNIT	1				er in delse si	ngan nanan shiroit or so sa sa gangaran na nan sa S S S	CHAIN OF CUS	TODY /	AN/	ALYT	FICA	L SE	RVIC	ES I	REQU	JEST	r fof	RM F	Page of	# 00000 	ger, grennel oor book
Phone: (519) 886	6910	where is a set of					Note: all TAT Ouo	ted material is in busine	ss davs whic	h excl	ude		Sp	ecify date	ate Service requested 2 day T/			2 day TAT (50%)				
Fax: (519) 886-90	47				LS		statutory holidays	and weekends. TAT san	nples receive	d pas	t 3:00	рт	r	equired		5 day (i	regul	ar)	V	Next day TAT (1	00%)	
Toll Free: 1-800-6	68-9878		1	a			or Saturday/Sund	ay begin the next day.						3-4 day (25%)						Same day TAT (2	200%)	
COMPANY NAME	/ i	ILA	· · · -				CRITERIA	Criteria on report YES	5NO		ANALY					REQUE	sт			PLEASE INDICAT	E FILTEREI	D,
OFFICE	kito	hen	ê5				Reg 153/04 🖵 Table 1 2	Reg 511/09 🖵 3 4 5 6 7	789											PRESERVED OR B < (F, P, F/P)	отн	
PROJECT MANAGER	David	M	ocle				TCLP MIS	4 PWQO HER	_		1										25	7
PROJECT # 160 -	1000145	-40	00							4	and and										$\frac{\mathcal{L}}{\mathcal{L}}$	/
PHONE 519. 71	41. 1313	FAX	579.	741	· . 54	ill	REPORT FORMAT/DISTRIBUTION			S	141									ENTERED BY:	KA	
ACCOUNT #								FAX BOTH		INER	1									DATE/TIME ENTI	RED:	\sim
QUOTATION #	OTATION # PO # 205030 SAMPLING INFORMATION			SELECT: PDF DIGITAL BOTH		CONTA	Pota									5-5U	<u></u>	12				
SA	SAMPLING INFORMATION Sample Date/Time TYPE MATRIX			EMAIL 2			DF C										6	19				
Sample Date/Time TYPE MATRIX			· · · · · · · · · · · · · · · · · · ·			Ë	83										<u> (</u>					
Date (dd-mm-yy)	Time (24hr) (hh:mm)	COMP	GRAB	WATE	SOIL	отне	SAMPLE DESC	RIPTION TO APPEAR ON	REPORT	NUME	E									COMMEN	TS	LAB ID
201-07-03	7 w			X			Water Lippi	y Well-before h	ca hanenti	5	1						_					
				ļ			11 5	Bytan		<u> </u>	 											
		 			 	<u> </u>	Claselled	water tap-un	heakd)						_							+
			╉──	+													+					+
			+							1	 	I I RI LINIR (•	' +							<u>-</u>	+
					1									-								1
		1												_								
								L	1171217	-COF	-C			-								
														+								
		ļ			_					<u> </u>	+						-+		_			
	ļ				+	+								┠───┠-								+
SPECI			OMMEN	175				THE OUESTIONS BELOW	MUST BE AN	SWERE	D FOR	 WATER	SAMP	LES (CH		es OR N	<u>o)</u>			SAMPLE		N
3760		/N3/ C	OMMEN	115			Are any samples If yes, an authori	taken from a regulated zed drinking water COC	DW System? MUST be u	sed fo	or this	submi	ssion.		Yes	No	X			FROZEN COLD COOLING INITIATEI		MEAN TEMP
							Is the water samp	oled intended to be pota	able for hurr	nan co	nsum	ption?			Yes	No				AMBIENT		10.1
SAMPLED BY: Linne	n The	(m)	2				DATE & TIME	RECEIVED BY:								DATE &	TIME					
RELINQUISHED BY:	J	2					DATE & TIME	RECEIVED AT LAB BY:	KSr	n						DATE &	3	29	25	If yes add SIF		רא
Notes 1. Quote number must	be provided to	ensure	proper	pricin	9		2. TAT may vary dep Please contact the	pendent on complexity of an e lab to confirm TATs.	nalysis and lat	b work	load at	time o	f subm	ission. 3	I. Any chai	known c n of cust	or sus; cody ir	pected ha	azards re nts secti	elating to a sample mu ion.	st be noted	l on the

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 03-JUL-12 Report Date: 10-JUL-12 10:23 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1171212

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000145-400 127149

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171212-1 BH-01-12 Sampled By: K. THRAMS on 03-JUL-12 @ 06:30 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	1.01		0.20	mg/L		07-JUL-12	
Nitrate-N	1.01		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.20		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.035		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
Total Coliforms	240	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-2 BH-02-12 Sampled By: K. THRAMS on 03-JUL-12 @ 06:45 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.061		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	7.37		0.20	mg/L		07-JUL-12	
Nitrate-N	7.37		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.40		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.040		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
Total Coliforms	90	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-3BH-03-12Sampled By:K. THRAMS on 03-JUL-12 @ 07:10Matrix:WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	4.92		0.20	mg/L		07-JUL-12	
Nitrate-N	4.92		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.18		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.059		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
Total Coliforms	30	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-4 BH-04-12 Sampled By: K. THRAMS on 03-JUL-12 @ 07:25 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	5.52		0.20	mg/L		07-JUL-12	
Nitrate-N	5.52		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171212-4 BH-04-12							
Sampled By: K. THRAMS on 03-JUL-12 @ 07:25							
Matrix: WATER							
Anions and Nutrients					05 11 10		D = = = = = = = = = = = = = = = = = = =
l otal Kjeldani Nitrogen	0.46		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total Bacteriological Tests	0.596		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
F. Coli	0		0	CFU/100ml	03-JUI -12	04-JUI -12	R2392405
Total Coliforms	10	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
11171212-5 BH-05-12							
Sampled By: K. THRAMS on 03-JUL-12 @ 07:45 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	0.78		0.20	mg/L		07-JUL-12	
Nitrate-N	0.78		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.16		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.063		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
Total Coliforms	7		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-6 BH-06-12 Sampled By: K. THRAMS on 03-JUL-12 @ 08:00 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.455		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	<0.2		0.20	mg/L		07-JUL-12	
Nitrate-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	1.37		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.513		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
	50	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-7 BH-07-12 Sampled By: K. THRAMS on 03-JUL-12 @ 08:10 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.072		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	2.14		0.20	mg/L		07-JUL-12	
Nitrate-N	2.14		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.45		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.070		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1171212-7 BH-07-12 Sampled By: K. THRAMS on 03-JUL-12 @ 08:10 Matrix: WATER							
Bacteriological Tests							
Total Coliforms	20	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-8 BH-08-12 Sampled By: K. THRAMS on 03-JUL-12 @ 08:45 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	3.58		0.20	mg/L		07-JUL-12	
Nitrate-N	3.58		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.25		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total	0.074		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
Total Coliforms	20	DLA	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
L1171212-9SW - SURFACE WATERSampled By:K. THRAMS on 03-JUL-12 @ 08:15Matrix:WATER							
Physical Tests							
Total Suspended Solids Anions and Nutrients	9.6		3.0	mg/L	06-JUL-12	07-JUL-12	R2394250
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-JUL-12	R2393604
Nitrate and Nitrite as N	6.92		0.20	mg/L		07-JUL-12	
Nitrate-N	6.92		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Nitrite-N	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2394317
Total Kjeldahl Nitrogen	0.25		0.15	mg/L	05-JUL-12	09-JUL-12	R2395239
Phosphorus, Total Bacteriological Tests	<0.030		0.030	mg/L	05-JUL-12	10-JUL-12	R2395232
E. Coli	260	DLM	10	CFU/100mL	03-JUL-12	04-JUL-12	R2392405
Total Coliforms	2700	DLM	100	CFU/100mL	03-JUL-12	04-JUL-12	R2392404
Aggregate Organics							
BOD Carbonaceous	<2.0		2.0	mg/L	04-JUL-12	09-JUL-12	R2394747

Reference Information

Sample Parameter Qualifier key listed:

Qualifier	Description		
DLA	Detection Limit Adjus	sted For required dilution	
DLM	Detection Limit Adjus	sted For Sample Matrix Effects	
Test Method R	eferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
BOD-C-WT Sample is incu	Water bated at 20°C– 1 C fo	BOD Carbonaceous r 5 days using a nitrification inhibi	APHA 5210 B (CBOD) tor.
EC-MF-WT A 100mL volun Method ID: WT	Water ne of sample is filtered -TM-1200	E. coli through a membrane, the membr	SM 9222D rane is placed on mFC-BCIG agar and incubated at @44.5–0.2°C for 24–2h.
ETL-N2N3-WT	Water	Calculate from NO2 + NO3	APHA 4110 B
NH3-WT Sample is mea colorimetrically	Water sured colorimetrically.	Ammonia as N When sample is turbid a distillation	EPA 350.1 on step is required, sample is distilled into a solution of boric acid and measured
NO2-WT A filtered water	Water sample (drinking wate	Nitrite-N ers-unfiltered) is analyzed by ion c	EPA 300.0 (IC) hromatography.
NO3-WT A filtered water	Water sample (drinking wate	Nitrate-N ers-unfiltered) is analyzed by ion c	EPA 300.0 (IC) hromatography.
P-TOTAL-WT Samples are di antimonyl tartra	Water igested to convert the t ate to form a antimonyl	Total Phosphorus total phosphorus to orthophospha -phosphomolybdate complex. Thi	APHA 4500-P B E te. The orthophosphate reacts with ammonium molybdate and potassium s complex is measured colorimetrically and reported as phosphorus.
SOLIDS-TSS-W A well-mixed sa four hours or u	T Water ample is filtered throug ntil a constant weight is	Total Suspended Solids h a weighed standard glass fibre s achieved.	APHA 2540 D-Gravimetric filter and the residue retained is dried in an oven at 105–5°C for a minimum of
TC-MF-WT A 100mL volun Method ID: WT	Water ne of sample is filtered -TM-1200	Total Coliforms through a membrane, the membrane	SM 9222B rane is placed on mENDO LES agar and incubated at 35–0.5°C for 24–2h.
TKN-WT Sample is dige by the instrume	Water sted to convert the TK ent is proportional to th	Total Kjeldahl Nitrogen N to ammonium sulphate. The an e concentration of ammonium sul	APHA 4500-N monia ions are heated to produce a colour complex. The absorbance measured phate in the sample and is reported as TKN.
** ALS test metho	ds may incorporate me	odifications from specified referen	ce methods to improve performance.
The last two lette	ers of the above test co	ode(s) indicate the laboratory that	performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 WT
 ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

127149

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder: I	_1171212	Rep	oort Date: 10-JU	L-12	Page	e 1 of 4
Client:	LVM INC. 353 BRID KITCHEN	GE ST. E. IER ON N2K 2Y!	5						
Contact:	DAVE MC	ORLOCK							
Test		Matrix	Reference	Result Qu	alifier	Units	RPD	Limit	Analyzed
BOD-C-WT		Water							
Batch R	2394747								
WG1500917-3 BOD Carbonad	LCS ceous			97.5		%		85-115	09-JUL-12
WG1500917-1	МВ								
BOD Carbonad	ceous			<2.0		mg/L		2	09-JUL-12
EC-MF-WT		Water							
Batch R	2392405								
WG1500489-1	MB			0				1	04 11 12
WG1500489-4	MB			0		OF 0/ TOOME		I	04-JUL-12
E. Coli				0		CFU/100mL		1	04-JUL-12
NH3-WT		Water							
Batch R	2393604								
WG1502415-2 Ammonia, Tota	CVS al (as N)			95.2		%		85-115	06-JUL-12
WG1502415-3	DUP		L1171212-1						
Ammonia, Tota	al (as N)		<0.050	<0.050	RPD-NA	mg/L	N/A	20	06-JUL-12
WG1502415-1 Ammonia, Tota	MB al (as N)			<0.050		mg/L		0.05	06-JUL-12
WG1502415-10) MS		L1173169-1						
Ammonia, Tota	al (as N)			78.6		%		75-125	06-JUL-12
WG1502415-4 Ammonia, Tota	MS al (as N)		L1171212-1	103.4		%		75-125	06-JUL-12
WG1502415-6	MS		L1171986-3						
Ammonia, Tota	al (as N)			92.6		%		75-125	06-JUL-12
WG1502415-8 Ammonia, Tota	MS al (as N)		L1172986-2	97.5		%		75-125	06-JUL-12
NO2-WT		Water							
Batch R	2394317								
WG1502432-5 Nitrite-N	DUP		L1171212-1 <0.10	<0.10	RPD-NA	mg/L	N/A	20	05-JUL-12
WG1502432-3 Nitrite-N	LCS			92.4		%		85-115	05-1111-12
WG1502/32-/			WG1502422 2	J2.7		<i>7</i> 0		00-115	03-JUL-12
Nitrite-N	2030		92.4	93		%	0.9	25	05-JUL-12
WG1502432-1 Nitrite-N	MB			<0.10		mg/L		0.1	05-JUL-12

NO3-WT

Water

		Workorder:	L1171212	2 Re	port Date: 10-JL	JL-12	Pag	e 2 of 4
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-WT	Water							
Batch R2394317								
WG1502432-5 DUP Nitrate-N		L1171212-1 1.01	1.01		mg/L	0.1	20	05-JUL-12
WG1502432-3 LCS Nitrate-N			93.4		%		85-115	05-JUL-12
WG1502432-4 LCSD Nitrate-N		WG1502432-3 93.4	94		%	0.1	25	05-JUL-12
WG1502432-1 MB Nitrate-N			<0.10		mg/L		0.1	05-JUL-12
P-TOTAL-WT	Water							
Batch R2395232								
WG1502368-4 CRM Phosphorus, Total		ERA525	102.6		%		80-120	10-JUL-12
WG1503789-1 CVS Phosphorus, Total			99.8		%		80-120	10-JUL-12
WG1502368-3 DUP Phosphorus, Total		L1171212-1 0.035	0.034		mg/L	2.9	25	10-JUL-12
WG1502368-5 DUP Phosphorus, Total		L1171212-9 <0.030	<0.030	RPD-NA	mg/L	N/A	25	10-JUL-12
WG1502368-2 LCS Phosphorus, Total			103.0		%		80-120	10-JUL-12
WG1502368-1 MB Phosphorus, Total			<0.030		mg/L		0.03	10-JUL-12
SOLIDS-TSS-WT	Water							
Batch R2394250								
WG1502424-1 LCS Total Suspended Solids			99.2		%		80-120	07-JUL-12
WG1502424-2 MB			-2.0		mall		0	07 11 10
	Wator		<3.0		iiig/L		3	07-JUL-12
IC-MF-WI	water							
WG1500486-1 MB Total Coliforms			0		CFU/100mL		1	041111 -12
WG1500486-4 MB			0		CFU/100ml		1	04-1111-12
TKN-WT	Water		-		5. 0, .00mE		I	07 00L-12

		Workorder:	2	Report Date: 1	0-JUL-12	Pa	ige 3 of 4	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-WT	Water							
Batch R2395239 WG1502368-4 CRM Total Kjeldahl Nitrogen		ERA525	98.6		%		80-120	09-JUL-12
WG1503788-1 CVS Total Kjeldahl Nitrogen			95.7		%		75-125	09-JUL-12
WG1502368-3 DUP Total Kjeldahl Nitrogen		L1171212-1 0.20	0.16		mg/L	20	20	09-JUL-12
WG1502368-5 DUP Total Kjeldahl Nitrogen		L1171212-9 0.25	0.28		mg/L	12	20	09-JUL-12
WG1502368-2 LCS Total Kjeldahl Nitrogen			94.8		%		80-120	09-JUL-12
WG1502368-1 MB Total Kjeldahl Nitrogen			<0.15		mg/L		0.15	09-JUL-12

Workorder: L1171212

Report Date: 10-JUL-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

																				12714	9
60 NORTHLAND	ROAD, UNIT	7	n ne e set de l'anne e set ne	antan katalan katalan Katalan katalan kata	nder i ven en og		ann eo annachta stàinn a' stàinn an Stàin				τις ν		D\/I(~FC 1		IIFS	T F(DRM	Dac	C of C # 0000)0
WATERLOO, ON I	N2V 2B8				•															Je 01	
Phone: (519) 886	-6910						Note: all TAT Quoted material is in business days which exclude			Specify date			Service requested			Jested		day TAT (50%)	_		
Fax: (519) 886-90	47		i serve	ו א) הרגיגו	L S)		statutory holidays	and weekends. TAT samples	s received pa	st 3:00	рт	re	quired		5 day (regular)					Next day TAT (100%)	_
1011 Free: 1-800-6	68-9878						or Saturday/Sunda	or Saturaay/Sunaay begin the next aay.							3-4 day (25%)				!	Same day TAT (200%)	
COMPANY NAME	1.3	n					CRITERIA	Criteria on report YES	NO				ANA	LYSIS	REQU	EST			F	PLEASE INDICATE FILTER	ED,
OFFICE	kildh	ener	/				Reg 153/04 a Reg 511/09 a Table 1 2 3 4 5 6 7 8 9													PRESERVED OR BOTH < (F, P, F/P)	
PROJECT MANAGER	Daniel !	hod	os				TCLP MISA	PWQO											s		~
PROJECT # 160-1	0000 148	- 40))				0Dws 0TF	IEK				.S							L	<u> </u>	2
PHONE 579 741	17/3	FAX	579,	741	.JY	2	REPORT	FORMAT/DISTRIBUTION				to the	5						E	ENTERED BY	
ACCOUNT #								AX BOTH	VER	5 5	4	ک. ۱	ز. ور		~				1	DATE/TIME ENTERED:	
QUOTATION #		PO #	20.	503	°0		SELECT: PDF	_ DIGITAL BOTH		y on		U L L	بحيام		Por the					3-JUL	\sim ()
S/	MPLING INFO	ORMA	TION				EMAIL 2		— Ŭ	Z Z	4	S S	3		-1	Ś			E	BIN #: / (M	
Sample Date	/Time	T	/PE		MATRI	x			N	44	1	3	74	1		Po	Ś		L	_61-1_	
Date (dd-mm-yy)	Time (24hr) (hh:mm)	COMP	GRAB	WATER	SOIL	OTHER	SAMPLE DESCR	PTION TO APPEAR ON REPC		ni hai	T T	मुभ	Pala 1	u.	el de	сß	ç			COMMENTS	LAB ID
2011-17-03	6:10			V	ł		BH - DI- 12		3	7	~	~	~	~	6						1
1	6.45			~	1		BH-02-12		3	1	1	1	~	V	V						2
	7'10			V			BH -03-12		3	~	10	1	V	V	1						3
	7:25			~			BH - 04-12		3		v	4	1	V	V						Ý
	7:45			~			BH-05-12		- 3	1	· ·		1	V	V						G
	9 io			~			<u>BH - 06-12</u>		7	V	1	/	V	V	1						6
	3:10			5			8407-12				ľ	~	V	4	V						17
	8:45	L		~			13H-09-12		5		V		<i>v</i>	V	-						-de-
<u> </u>	3:15	 					SW- Jurfa	w white	<u> </u>	- <u> </u>	~		-	_/		<u>`</u>	~				5
		<u>.</u>	<u> </u>				v		I	I	I										
	<u> </u>			 				······································													
								111													_
				<u> </u>												_			-+		
SPECI	AL INSTRUCTIO	NS/CC	OMMEN	TS				THE QUESTIONS BELOV		7 1 2	1111 2 1	2 - 2 -		FC	*	•)	/			SAMPLE CONDITI	ON
							Are any samples t	aken from a regulated Dw 3	эузсени:						· •	- ব			F	ROZEN	MEAN
							lf yes, an authoriz	ed drinking water COC MUS	ST be used t	or this	submi	ssion.									TEMP
							is the water sampl	ed intended to be potable f	for human o	onsum	ption?			Yes	5 🖬 N	10 8				AMBIENT	12.7
SAMPLED BY:	an M	1.71	44.	,			DATE & TIME	RECEIVED BY:						T	DATE &	TIME		~	C		INIT
RELINQUISHED BY:	ELINQUISHED BY: Karan Magana				DATE & TIME RECEIVED AT LAB BY:				31	12	8.24		f yes add SIF	K							
Notes	and the second second second		14-16-16	-				n e e la litera el construction de la construcción de la construcción de la construcción de la construcción de	entered and an entered and an enter				19. 29° (1997 - 1997) 1		a a a proposition a		antonia antana ar Sondo I.	and the second se			ti official and the sector of
1. Quote number must	be provided to e	ensure	proper	pricing	1		2. TAT may vary depe	ndent on complexity of analysis	is and lab wor	kload at	time o	t submi	ssion.	3. Any	кпоwn	or sus	pected	nazards	relatir	ig to a sample must be not	eu on the

Please contact the lab to confirm TATs.

chain of custody in comments section.

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 08-AUG-12 Report Date: 14-AUG-12 15:30 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1190626

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000145-0-00-400 128263

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1190626-1 BH-01-12 Sampled By: K. THRAMS on 08-AUG-12 @ 07:39 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	1.12		0.20	mg/L		10-AUG-12	
Nitrate-N	1.12		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	0.16		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	0.046		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	70	DLM	10	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-2 BH-02-12 Sampled By: K. THRAMS on 08-AUG-12 @ 07:50 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	8.68		0.20	mg/L		10-AUG-12	
Nitrate-N	8.68		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	0.28		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	0.687		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	640	DLM	10	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-3 BH-03-12 Sampled By: K. THRAMS on 08-AUG-12 @ 08:11 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	5.72		0.20	mg/L		10-AUG-12	
Nitrate-N	5.72		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	0.29		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	2.23		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	1		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-4 BH-04-12 Sampled By: K. THRAMS on 08-AUG-12 @ 08:42 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	6.61		0.20	mg/L		10-AUG-12	
Nitrate-N	6.61		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1190626-4 BH-04-12 Sampled By: K. THRAMS on 08-AUG-12 @ 08:42 Matrix: WATER							
Anions and Nutrients							
Total Kjeldahl Nitrogen	0.61		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	0.032		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	1		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-5 BH-05-12 Sampled By: K. THRAMS on 08-AUG-12 @ 08:54 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	1		0.20	mg/L		10-AUG-12	
Nitrate-N	1.00		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	0.26		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	2.12		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	1		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-6 BH-06-12 Sampled By: K. THRAMS on 08-AUG-12 @ 09:06 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.392		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	<0.2		0.20	mg/L		10-AUG-12	
Nitrate-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	1.54		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	0.438		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological lests							
	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
L1190626-7 BH-07-12 Sampled By: K. THRAMS on 08-AUG-12 @ 09:17	10	DLM	10	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	2.91		0.20	mg/L		10-AUG-12	
Nitrate-N	2.91		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	0.38		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total Bacteriological Tests	0.487		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1190626-7 BH-07-12 Sampled By: K. THRAMS on 08-AUG-12 @ 09:17 Matrix: WATER							
Bacteriological Tests							
Total Coliforms	10	DLM	10	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-8 BH-08-12 Sampled By: K. THRAMS on 08-AUG-12 @ 10:00 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	4.23		0.20	mg/L		10-AUG-12	
Nitrate-N	4.23		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	<0.15		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	0.094		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	0		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	3		0	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
L1190626-9 CREEK - SURFACE WATER Sampled By: K. THRAMS on 08-AUG-12 @ 09:25 Matrix: WATER							
Physical Tests							
Total Suspended Solids Anions and Nutrients	48.0		3.0	mg/L	11-AUG-12	14-AUG-12	R2416079
Ammonia, Total (as N)	<0.050		0.050	mg/L		09-AUG-12	R2413511
Nitrate and Nitrite as N	7.58		0.20	mg/L		10-AUG-12	
Nitrate-N	7.58		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	09-AUG-12	09-AUG-12	R2414345
Total Kjeldahl Nitrogen	0.25		0.15	mg/L	08-AUG-12	09-AUG-12	R2414021
Phosphorus, Total	<0.030		0.030	mg/L	08-AUG-12	09-AUG-12	R2414024
Bacteriological Tests							
E. Coli	330	DLM	10	CFU/100mL	09-AUG-12	10-AUG-12	R2414050
Total Coliforms	5100	DLM	100	CFU/100mL	09-AUG-12	10-AUG-12	R2414049
Aggregate Organics							
BOD Carbonaceous	<2.0		2.0	mg/L	08-AUG-12	13-AUG-12	R2415327

Reference Information

QC Samples with Qualifiers & Comments: **QC Type Description** Parameter Qualifier Applies to Sample Number(s) Duplicate Ammonia, Total (as N) DLM L1190626-1, -2, -3, -4, -5, -6, -7, -8, -9 Sample Parameter Qualifier key listed: Qualifier Description DLM Detection Limit Adjusted For Sample Matrix Effects **Test Method References:** ALS Test Code Matrix Method Reference** **Test Description** BOD-C-WT Water **BOD** Carbonaceous APHA 5210 B (CBOD) Sample is incubated at 20°C-1 C for 5 days using a nitrification inhibitor. FC-MF-WT Water E. coli SM 9222D A 100mL volume of sample is filtered through a membrane, the membrane is placed on mFC-BCIG agar and incubated at @44.5–0.2°C for 24–2h. Method ID: WT-TM-1200 ETL-N2N3-WT Calculate from NO2 + NO3 Water APHA 4110 B NH3-WT Water Ammonia as N FPA 350.1 Sample is measured colorimetrically. When sample is turbid a distillation step is required, sample is distilled into a solution of boric acid and measured colorimetrically. NO2-WT Water Nitrite-N EPA 300.0 (IC) A filtered water sample (drinking waters-unfiltered) is analyzed by ion chromatography. NO3-WT Water Nitrate-N EPA 300.0 (IC) A filtered water sample (drinking waters-unfiltered) is analyzed by ion chromatography. P-TOTAL-WT Water **Total Phosphorus** APHA 4500-P B E Samples are digested to convert the total phosphorus to orthophosphate. The orthophosphate reacts with ammonium molybdate and potassium antimonyl tartrate to form a antimonyl-phosphomolybdate complex. This complex is measured colorimetrically and reported as phosphorus. SOLIDS-TSS-WT Water Suspended solids APHA 2540 D-Gravimetric A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 105-5°C for a minimum of four hours or until a constant weight is achieved. TC-MF-WT Water Total Coliforms SM 9222B A 100mL volume of sample is filtered through a membrane, the membrane is placed on mENDO LES agar and incubated at 35–0.5°C for 24–2h. Method ID: WT-TM-1200 TKN-WT Total Kjeldahl Nitrogen APHA 4500-N Water Sample is digested to convert the TKN to ammonium sulphate. The ammonia ions are heated to produce a colour complex. The absorbance measured by the instrument is proportional to the concentration of ammonium sulphate in the sample and is reported as TKN. ** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
Chain of Custody Numbers:	

128263

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L1190626	6 Re	port Date: 14-	AUG-12	Pa	ge 1 of 4
Client:	LVM INC. 353 BRID KITCHEN DAVE MC	GE ST. E. IER ON N2K 2Y DRLOCK	5						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analvzed
									,
BOD-C-WT		Water							
WG1522593-3 BOD Carbonad	LCS LCS			93.9		%		85-115	13-AUG-12
WG1522593-1 BOD Carbonad	MB ceous			<2.0		mg/L		2	13-AUG-12
EC-MF-WT		Water							
Batch R	2414050								
WG1523381-1 E. Coli	MB			0		CFU/100mL		1	10-AUG-12
NH3-WT		Water							
Batch R	2413511								
WG1523242-2 Ammonia, Tota	CVS al (as N)			100.8		%		85-115	09-AUG-12
WG1523242-7 Ammonia, Tota	DUP al (as N)		L1190626-7 <0.050	<0.050	RPD-NA	mg/L	N/A	20	09-AUG-12
WG1523242-1 Ammonia, Tota	MB al (as N)			<0.050		mg/L		0.05	09-AUG-12
WG1523242-4 Ammonia, Tota	MS al (as N)		L1190086-1	88.8		%		75-125	09-AUG-12
WG1523242-6 Ammonia, Tota	MS al (as N)		L1190251-1	80.8		%		75-125	09-AUG-12
WG1523242-8 Ammonia, Tota	MS al (as N)		L1190626-7	88.7		%		75-125	09-AUG-12
NO2-WT		Water							
Batch R	2414345								
WG1523764-3 Nitrite-N	LCS			90.8		%		85-115	09-AUG-12
WG1523764-4 Nitrite-N	LCSD		WG1523764-3 90.8	91		%	0.0	25	09-AUG-12
WG1523764-1 Nitrite-N	MB			<0.10		mg/L		0.1	09-AUG-12
NO3-WT		Water							
Batch R	2414345								
WG1523764-3 Nitrate-N	LCS			96.6		%		85-115	09-AUG-12
WG1523764-4 Nitrate-N	LCSD		WG1523764-3 96.6	97		%	0.2	25	09-AUG-12
WG1523764-1	МВ								

		Workorder: L1190626		26 Re	eport Date: 14	-AUG-12	Page 2 of 4		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
NO3-WT Batch R2414345 WG1523764-1 MB Nitrate-N	Water		<0.10		mg/L		0.1	09-AUG-12	
P-TOTAL-WT	Water								
BatchR2414024WG1523202-4CRMPhosphorus, Total		ERA525	98.0		%		80-120	09-AUG-12	
WG1523625-1 CVS Phosphorus, Total			97.2		%		80-120	09-AUG-12	
WG1523202-3 DUP Phosphorus, Total		L1190626-1 0.046	0.052		mg/L	12	25	09-AUG-12	
WG1523202-5 DUP Phosphorus, Total		L1190626-9 <0.030	<0.030	RPD-NA	mg/L	N/A	25	09-AUG-12	
WG1523202-2 LCS Phosphorus, Total			91.3		%		80-120	09-AUG-12	
WG1523202-1 MB Phosphorus, Total			<0.030		mg/L		0.03	09-AUG-12	
SOLIDS-TSS-WT	Water								
Batch R2416079 WG1524947-1 LCS Total Suspended Solids WG1524947-2 MB			97.2		%		80-120	14-AUG-12	
Total Suspended Solids			<3.0		mg/L		3	14-AUG-12	
TC-MF-WT Batch R2414049 WG1523378-1 MB Total Coliforms	Water		0		CFU/100mL		1	10-AUG-12	
TKN-WT	Water								
BatchR2414021WG1523202-4CRMTotal Kjeldahl Nitrogen		ERA525	100.6		%		80-120	09-AUG-12	
WG1523621-1 CVS Total Kjeldahl Nitrogen			110.0		%		75-125	09-AUG-12	
WG1523202-3 DUP Total Kjeldahl Nitrogen		L1190626-1 0.16	<0.15	RPD-NA	mg/L	N/A	20	09-AUG-12	
WG1523202-5 DUP Total Kjeldahl Nitrogen		L1190626-9 0.25	0.27		mg/L	5.3	20	09-AUG-12	

		Workorder	Workorder: L1190626			4-AUG-12	Page 3 of 4		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
TKN-WT	Water								
Batch R2414 WG1523202-2 LC	021 CS								
Total Kjeldahl Nitrog	gen		92.1		%		80-120	09-AUG-12	
WG1523202-1 MI Total Kjeldahl Nitrog	B gen		<0.15		mg/L		0.15	09-AUG-12	

Workorder: L1190626

Report Date: 14-AUG-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Note: all TAT Quoted material in inclusion of	01
statutory holidays and weekends TAT samples received user 2 co	quested 2 day TAT (50%)
or Saturday/Sunday begin the next day.	Next day TAT (100%)
CRITERIA Criteria on report VES NO 3-4 day (25%)	Same day TAT (200%)
Reg 153/04 ARALYSIS REQUEST	PLEASE INDICATE FILTERED,
Table 1 2 3 4 5 6 7 8 9	PRESERVED OR BOTH
	< (F, P, F/P)
ODWSOTHER	SUBMISSION #:
	ENTERED BY: 201
	K-KI
SELECT: PDE I DICITAL BOTH ZE SELECT: PDE I DICITAL BOTH	DATE/TIME ENTERED:
- EMAIL 1 BOTH EX 9 3 3 3	BAUGIZ
	BIN #:
	325
SAMPLE DESCRIPTION TO APPEAR ON REPORT	
8H-01-12 3 V V V V	
24-22-D 3 V V V V	
$\frac{3}{34-0} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
11 - D6-12	
BH-07-12 3 V V V V	
IH-08-12	
Breek - Sustace water 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
326-COFC	
lated DW System?	SAMPLE CONDITION
If yes, an authorized drinking water COC MUST be used for this submission.	COLD ME
Is the water sampled intended to be potable for human consumption? Yes D No S	
DATE & TIME RECEIVED BY:	OBSERVATIONS
DATE & TIME RECEIVED AT LAB BY:	Yes 🗆 No 🗔
If yes, an authorized drinking water COC MUST be used for this submission. Is the water sampled intended to be potable for human consumption? DATE & TIME RECEIVED BY: DATE & TIME RECEIVED AT LAB BY:	

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 08-AUG-12 Report Date: 15-AUG-12 10:55 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1190638

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000145-0-00-400 133239

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

160-P0000145-0-00-400

CRITERIA REPORT

L1190638 CONTD.... Page 2 of 5 15-AUG-12 10:56:34

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Spe	cific Limits	Analyzed	Batch
11190638-1 WATER TAP (BEFORE TRE	ATMENT SYSTE	M)						
Sampled By: K THRAMS on 08-AUG-12 @	07:54							
	07.54				STANDADDS	GUIDELINES		
Matrix: WATER					STANDARDS			
General Water Quality Package								
Ammonia, Total (as N)	<0.050		0.050	ma/L			09-AUG-12	R2413511
Anion Soon (IC)			0.000					
Allion Scall (IC)	122		2.0			250	00 4110 42	D0444045
Bromido	-0.10		2.0	mg/L mg/l		250	09-AUG-12	R2414345
Bromide	<0.10		0.10	mg/L mg/l	15		09-AUG-12	R2414345
Nitrite-N	<0.10		0.10	mg/L	1.5		09-AUG-12	R2414345
Nitrate-N	9.40		0.10	mg/L	10		09-AUG-12	R2414345
Sulphate	28.3		2.0	mg/L	10	500	09-AUG-12	R2414345
Silica	77		2.1	mg/l				
	1.1		2.1	nig/L		-	13-AUG-12	Dettered
Color, Apparent	<1.0		1.0	C.U.		5	09-AUG-12	R2413181
Conductivity	998		3.0	umhos/cm			09-AUG-12	R2413970
Detailed Ion Balance Calculation								
Ion Balance	96.3			%			13-AUG-12	
Cation - Anion Balance	-1.9			%			13-AUG-12	
Computed Conductivity	842			uS/cm			13-AUG-12	
Conductivity % Difference	-16.9			%			13-AUG-12	
TDS (Calculated)	529			mg/L			13-AUG-12	
Anion Sum	9.18			me/L			13-AUG-12	
Cation Sum	8.83			me/L			13-AUG-12	
Saturation pH	7.19			рН			13-AUG-12	
Langelier Index	0.8			No Unit		00.400	13-AUG-12	
Hardness (as CaCO3)	268			mg/L		** 80-100	13-AUG-12	
E. Coli	0		0	CFU/100mL	0		10-AUG-12	R2414050
Metal Scan-Total								
Aluminum (Al)-Total	<0.010		0.010	mg/L		0.1	10-AUG-12	R2414176
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	0.006		10-AUG-12	R2414176
Arsenic (As)-Total	<0.0010		0.0010	mg/L	0.025		10-AUG-12	R2414176
Barium (Ba)-Total	0.076		0.010	mg/L	1		10-AUG-12	R2414176
Beryllium (Be)-Total	<0.0010		0.0010	mg/L			10-AUG-12	R2414176
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L			10-AUG-12	R2414176
Boron (B)-Total	<0.050		0.050	mg/L	5		10-AUG-12	R2414176
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	0.005		10-AUG-12	R2414176
Calcium (Ca)-Total	75.2		0.50	mg/L			10-AUG-12	R2414176
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	0.05		10-AUG-12	R2414176
Cobalt (Co)-Total	<0.00050		0.00050	mg/L		4	10-AUG-12	R2414176
Copper (Cu)-Total	0.0130		0.0010	mg/L		1	10-AUG-12	R2414176
Iron (Fe)-Total	<0.050		0.050	mg/∟	0.01	0.3	10-AUG-12	R2414176
Magnosium (Mg) Total	19.6		0.0010	mg/L mg/l	0.01		10-AUG-12	R2414170
Manganese (Mn)-Total	<0.0010		0.50	mg/L		0.05	10-AUG-12	R2414170
Molybdenum (Mo)-Total	<0.0010		0.0010	mg/L		0.00	10-AUG-12	R2414176
Nickel (Ni)-Total	<0.0020		0.0010	mg/L			10-AUG-12	R2414176
Phosphorus (P)-Total	<0.050		0.050	ma/l			10-AUG-12	R2414176
Potassium (K)-Total	1.2		1.0	ma/l			10-AUG-12	R2414176
Selenium (Se)-Total	<0.00040		0.00040	ma/L	0.01		10-AUG-12	R2414176
Silicon (Si)-Total	3.6		1.0	mg/L			10-AUG-12	R2414176

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

160-P0000145-0-00-400

CRITERIA REPORT

L1190638 CONTD.... Page 3 of 5 15-AUG-12 10:56:34

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Sp	ecific Limits	Analyzed	Batch
11190638-1 WATER TAP (BEFORE TRE	ATMENT SYSTE	M)						
Sampled By: K THRAMS on 08-AUG-12 @	07:54							
	07.04				STANDARDS	GUIDELINES		
Maula. WATER								
General Water Quality Package								
Metal Scan-Total								
Silver (Ag)-Total	<0.00010		0.00010	mg/L			10-AUG-12	R2414176
Sodium (Na)-Total	79.0	DLM	5.0	mg/L	** 20	200	10-AUG-12	R2414176
Strontium (Sr)-Total	0.195		0.0010	mg/L			10-AUG-12	R2414176
Thallium (TI)-Total	<0.00030		0.00030	mg/L			10-AUG-12	R2414176
Tin (Sn)-Total	<0.0010		0.0010	mg/L			10-AUG-12	R2414176
Titanium (Ti)-Total	<0.0020		0.0020	mg/L			10-AUG-12	R2414176
Tungsten (W)-Total	<0.010		0.010	mg/L	0.00		10-AUG-12	R2414176
Uranium (U)-Total	<0.0050		0.0050	mg/L	0.02		10-AUG-12	R2414176
Vanadium (V)-Total	<0.0010		0.0010	mg/L		F	10-AUG-12	R2414176
Zinc (Zn)-Total	-0.0010		0.0030	mg/L		5	10-AUG-12	R2414176
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	<0.0040		0.0040	mg/L			10-AUG-12	R2414176
Phosphate-P (ortho)	0.0034		0.0030	mg/L			10-AUG-12	R2414025
Total Coliform Background	5		0	CFU/100mL			10-AUG-12	R2414049
Redox Potential	184		-1000	mV			10-AUG-12	R2414405
Sodium Adsorption Ratio	2.1		0.030	No Unit			15-AUG-12	
Total Coliforms	0		0	CFU/100mL	. 0		10-AUG-12	R2414049
Total Dissolved Solids	590		20	mg/L		** 500	10-AUG-12	R2414154
Turbidity	0.10		0.10	NTU		5	08-AUG-12	R2414621
Hq	7.96		0.10	pH units		6.5-8.5	09-AUG-12	R2413968
Individual Analytes								
Speciated Alkalinity								
Alkalinity Total (as CaCO3)	254		10	ma/l		30-500	09-AUG-12	R2414044
Alkalinity, Bicarbonate (as	252		10	ma/L			09-AUG-12	R2414044
CaCO3)								_
Alkalinity, Carbonate (as CaCO3)	<10		10	mg/L			09-AUG-12	R2414044
Alkalinity, Hydroxide (as CaCO3)	<10		10	mg/L			09-AUG-12	R2414044

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

Reference Information

160-P0000145-0-00-400

Sample Parameter Qualifier key listed:

Qualifier De	escription			
DLM D	etection Limit Ac	djusted For Sample Matrix Ef	fects	
Methods Listed ((if applicable):			
ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
ALK-SPEC-WT	Water	Speciated Alkalinity		EPA 310.2
ANIONS-WT	Water	Anion Scan (IC)		EPA 300.0 (IC)
COLOUR-WT	Water	Colour		APHA 2120
Apparent colour i EC-MF-WT	is determined by Water	y analysis of the decanted sat E. coli	mple using the platinum-cobalt colourimetric me	ethod. SM 9222D
A 100mL volume Method ID: WT-T	of sample is filt M-1200	ered through a membrane, th	ne membrane is placed on mFC-BCIG agar and	d incubated at @44.5–0.2°C for 24–2h.
EC-WT	Water	Conductivity		APHA 2510 B
Water samples c ETL-SAR-CALC-WT	an be measured - Water	d directly by immersing the co Sodium Adsorption Rati	onductivity cell into the sample. io	Calculation
ETL-SILICA-CALC-V	NT Water	Calculate from SI-TOT-	WT	EPA 200.8
ONBALANCE-OP03	3-WT Water	Detailed Ion Balance Ca	alculation	APHA 1030E, 2330B, 2510A
MET-TOT-WT	Water	Metal Scan-Total		EPA 6020A
The concentratio MS.	n of metals is de	etermined on an unfiltered aq	ueous sample. The sample is digested with nit	tric acid and then analyzed directly by ICP
NH3-WT	Water	Ammonia as N		EPA 350.1
Sample is measu colorimetrically.	ured colorimetric	cally. When sample is turbid a	a distillation step is required, sample is distilled	into a solution of boric acid and measured
P-ORTHO-LOW-WT	Water	Phosphorus-P (ortho)		APHA 4500-P B E
PH-ALK-WT	Water	рН		APHA 4500 H-Electrode
Water samples a	re analvzed dire	ectly by a calibrated pH meter		
REDOX-POTENTIA	L-WT Water	Redox Potential		APHA 2580
SOLIDS-TDS-WT	Water	Total Dissolved Solids		APHA 2540C
A well-mixed san 180–10°C for 1hr	nple is filtered th r.	nough glass fibres filter. A kn	own volume of the filtrate is evaporated and dri	ed at 105–5°C overnight and then
TC-MF-WT	Water	Total Coliforms		SM 9222B
A 100mL volume Method ID: WT-T	of sample is filt ™-1200	ered through a membrane, th	ne membrane is placed on mENDO LES agar a	and incubated at 35–0.5°C for 24–2h.
TCB-MF-WT	Water	REG		SM 9222B
A 100mL volume Method ID: WT-T	of sample is filt M-1200.	ered through a membrane, th	ne membrane is placed on mENDO LES agar a	and incubated at 35–0.5°C for 24–2h.
TURBIDITY-WT	Water	Turbidity		APHA 2130 B
Sample result is by a standard ref	based on a com erence suspens	parison of the intensity of the sion under the same condition	light scattered by the sample under defined co s. Sample readings are obtained from a Nephe	onditions with the intensity of light scattere
			Laboratory Methods employed follow in- generally based on nationally or interna	-house procedures, which are tionally accepted methodologies.
Chain of Custod	y numbers:			
133239				
The last two lette	ers of the above	test code(s) indicate the labo	pratory that performed analytical analysis for the	at test. Refer to the list below:
Laboratory Defi	inition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WТ		ALS ENVIRONMENTAL - W	ATERLOO,	

ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of criteria limits is provided as is without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

		Workorder	: L119063	38 R	eport Date:	15-AUG-12		Page 1 of 12
Client: Contact:	LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K DAVE MORLOCK	2Y5						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-SPEC-WT	Water							
Batch WG1523640 Alkalinity, T	R2414044 -4 CRM otal (as CaCO3)	WT-ALK-CR	M 106.7		%		80-120	09-AUG-12
WG1523640 Alkalinity, T	-2 CVS otal (as CaCO3)		99.7		%		70-130	09-AUG-12
WG1523640 Alkalinity, T	-3 DUP otal (as CaCO3)	L1190638-1 254	257		mg/L	1.1	20	09-AUG-12
Alkalinity, B	icarbonate (as CaCO3)	252	255		mg/L	1.1	25	09-AUG-12
Alkalinity, C	arbonate (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	09-AUG-12
Alkalinity, H	ydroxide (as CaCO3)	<10	<10	RPD-NA	mg/L	N/A	25	09-AUG-12
WG1523640 Alkalinity T	-1 MB		~10		ma/l		10	00 4110 40
Alkalinity, P	icarbonate (as CaCO3)		<10		mg/L		10	09-AUG-12
Alkalinity, D	arbonate (as CaCO3)		<10		mg/L		10	09-AUG-12
Alkalinity, H	vdroxide (as CaCO3)		<10		mg/L		10	09-AUG-12
	Water							00 400 12
Batch	R2414345							
WG1523764	-5 DUP	L1190422-5						
Chloride		21.7	21.5		mg/L	1.0	20	09-AUG-12
Bromide		<1.0	<1.0	RPD-NA	mg/L	N/A	20	09-AUG-12
Fluoride		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Nitrate-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Sulphate		1210	1200		mg/L	0.8	20	09-AUG-12
WG1523764 Chloride	-6 DUP	L1191043-8 4.4	4.3		mg/L	0.9	20	09-AUG-12
Bromide		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Fluoride		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Nitrate-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Sulphate		3.5	3.4		mg/L	2.6	20	09-AUG-12
WG1523764 Chloride	-7 DUP	L1191063-9 4.7	4.7		mg/L	0.5	20	09-AUG-12
Bromide		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Fluoride		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Nitrite-N		<0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12

Client:

Contact:

Quality Control Report

 Workorder:
 L1190638
 Report Date:
 15-AUG-12
 Page
 2
 of
 12

 LVM INC.
 353 BRIDGE ST. E.
 KITCHENER ON N2K 2Y5
 Value
 Value

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ANIONS-WT		Water							
Batch R	2414345								
WG1523764-7 Nitrate-N	DUP		L1191063-9 <0.10	<0.10	RPD-NA	mg/L	N/A	20	09-AUG-12
Sulphate			4.4	4.4		mg/L	0.2	20	09-AUG-12
WG1523764-3	LCS			08.0		0/		05.445	
Bromido				90.0		70 9/		85-115	09-AUG-12
Eluorido				94.0 00.0		70 9/		85-115	09-AUG-12
Nitrite-N				99.0 00.8		/6 9/		85-115	09-AUG-12
Nitrate-N				90.0		%		00-110 05 115	09-AUG-12
Sulphate				90.0 99.5		%		95 115	09-AUG-12
WG1523764-4			WG1523764-3	00.0		, o		00-110	09-400-12
Chloride	LCOD		98.0	98.1		%	0.0	25	09-AUG-12
Bromide			94.8	95.0		%	0.2	25	09-AUG-12
Fluoride			99.0	99.5		%	0.5	25	09-AUG-12
Nitrite-N			90.8	90.8		%	0.0	25	09-AUG-12
Nitrate-N			96.6	96.8		%	0.2	25	09-AUG-12
Sulphate			99.5	99.7		%	0.2	25	09-AUG-12
WG1523764-1 Chloride	MB			<2.0		ma/L		2	09-AUG-12
Bromide				<0.10		mg/L		0.1	09-AUG-12
Fluoride				<0.10		mg/L		0.1	09-AUG-12
Nitrite-N				<0.10		mg/L		0.1	09-AUG-12
Nitrate-N				<0.10		mg/L		0.1	09-AUG-12
Sulphate				<2.0		mg/L		2	09-AUG-12
COLOUR-WT		Water							
Batch R	2413181								
WG1523220-4	CRM		WT-COLOUR-0	CRM		<u></u>			
Color, Apparei	nt			96.2		%		80-120	09-AUG-12
WG1523220-2 Color, Appare	CVS nt			99.3		%		80-120	09-AUG-12
WG1523220-3 Color, Appare	DUP nt		L1190477-4 20.3	19.6		C.U.	3.4	20	09-AUG-12
WG1523220-1 Color, Appare	MB nt			<1.0		C.U.		1	09-AUG-12
EC-MF-WT		Water							

			Workorder: L1190638			Report Date: 1	Page 3 of 12		
Client:	LVM INC 353 BRID KITCHEN DAVE MO	IGE ST. E. IER ON N2K 2Y! DRLOCK	5						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-ME-WT		Water							
Batch	R2414050	Water							
WG1523381-2 E. Coli	2 DUP		L1190477-6 0	0		CFU/100mL	0.0	50	10-AUG-12
WG1523381- ′ E. Coli	1 MB			0		CFU/100mL		1	10-AUG-12
EC-WT		Water							
Batch	R2413970								
WG1523330- Conductivity	1 CVS			100.2		%		90-110	09-AUG-12
WG1523330-3 Conductivity	3 DUP		L1190638-1 998	999		umhos/cm	0.1	10	09-AUG-12
WG1523330-4 Conductivity	4 DUP		L1191043-1 139	137		umhos/cm	1.4	10	09-AUG-12
WG1523330- Conductivity	5 DUP		L1191043-13 41.3	41.2		umhos/cm	0.2	10	09-AUG-12
WG1523330-0 Conductivity	6 DUP		L1191063-16 105	105		umhos/cm	0.0	10	09-AUG-12
WG1523330-2 Conductivity	2 MB			<3.0		umhos/cm		3	09-AUG-12
MET-TOT-WT		Water							
Batch	R2414176								
WG1523744-2 Aluminum (A	2 CVS I)-Total			103.7		%		80-120	10-AUG-12
Antimony (St	o)-Total			103.2		%		80-120	10-AUG-12
Arsenic (As)-	Total			99.6		%		80-120	10-AUG-12
Barium (Ba)-	Total			103.6		%		80-120	10-AUG-12
Beryllium (Be	e)-Total			98.5		%		80-120	10-AUG-12
Bismuth (Bi)-	Total			104.3		%		80-120	10-AUG-12
Boron (B)-To	tal			94.3		%		70-130	10-AUG-12
Cadmium (Co	d)-Total			104.6		%		80-120	10-AUG-12
Calcium (Ca)	-Total			99.4		%		80-120	10-AUG-12
Chromium (C	r)-Total			99.9		%		80-120	10-AUG-12
Cobalt (Co)-1	Fotal			101.3		%		80-120	10-AUG-12
Copper (Cu)-	Total			101.4		%		80-120	10-AUG-12
Iron (Fe)-Tota	al			94.4		%		70-130	10-AUG-12
Lead (Pb)-To	otal			100.9		%		80-120	10-AUG-12
Magnesium (Mg)-Total			97.7		%		80-120	10-AUG-12

Workorder: L1190638 Report Date: 15-AUG-12 Page 4 of 12

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5

Contact: DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R2414176								
WG1523744-2 CVS								
Manganese (Mn)-Total			104.2		%		80-120	10-AUG-12
Molybdenum (Mo)-Total			99.5		%		90-110	10-AUG-12
Nickel (Ni)-Total			101.0		%		80-120	10-AUG-12
Phosphorus (P)-Total			102.3		%		70-130	10-AUG-12
Potassium (K)-Total			96.9		%		80-120	10-AUG-12
Selenium (Se)-Total			97.1		%		80-120	10-AUG-12
Silicon (Si)-Total			94.7		%		70-130	10-AUG-12
Silver (Ag)-Total			107.4		%		80-120	10-AUG-12
Sodium (Na)-Total			98.5		%		80-120	10-AUG-12
Strontium (Sr)-Total			101.9		%		80-120	10-AUG-12
Thallium (TI)-Total			108.1		%		80-120	10-AUG-12
Tin (Sn)-Total			101.7		%		70-130	10-AUG-12
Titanium (Ti)-Total			99.2		%		80-120	10-AUG-12
Tungsten (W)-Total			100.1		%		70-130	10-AUG-12
Uranium (U)-Total			106.9		%		80-120	10-AUG-12
Vanadium (V)-Total			95.7		%		80-120	10-AUG-12
Zinc (Zn)-Total			93.5		%		80-120	10-AUG-12
Zirconium (Zr)-Total			98.4		%		80-120	10-AUG-12
WG1523188-4 DUP		WG1523188-	3					
Aluminum (AI)-Total		0.076	0.084		mg/L	9.5	20	10-AUG-12
Antimony (Sb)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	10-AUG-12
Arsenic (As)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	10-AUG-12
Barium (Ba)-Total		0.039	0.040		mg/L	1.1	20	10-AUG-12
Beryllium (Be)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	10-AUG-12
Bismuth (Bi)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	10-AUG-12
Boron (B)-Total		<0.050	<0.050	RPD-NA	mg/L	N/A	20	10-AUG-12
Cadmium (Cd)-Total		<0.000090	<0.000090	RPD-NA	mg/L	N/A	20	10-AUG-12
Calcium (Ca)-Total		42.5	42.0		mg/L	1.1	20	10-AUG-12
Chromium (Cr)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	10-AUG-12
Cobalt (Co)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	10-AUG-12
Copper (Cu)-Total		<0.0010	0.0014	RPD-NA	mg/L	N/A	20	10-AUG-12
Iron (Fe)-Total		0.356	0.347		mg/L	2.7	20	10-AUG-12
Lead (Pb)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	10-AUG-12

Workorder: L1190638

Report Date: 15-AUG-12

Page 5 of 12

LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 DAVE MORLOCK

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R241417	6							
WG1523188-4 DUP	I	WG1523188-3	11 1		ma/l	4.0	00	
Magnesium (Mg)-Tota	1	0.0691	0.0672		mg/L	1.6	20	10-AUG-12
Mahadanum (Ma) Tat		0.0001	0.0073		mg/L	1.1	20	10-AUG-12
Nickel (Nii) Tetel	al	0.0024	0.0023		mg/∟	4.3	20	10-AUG-12
NICKEI (NI)-I OTAI		<0.0020	<0.0020	RPD-NA	mg/L	N/A	20	10-AUG-12
Phosphorus (P)-Total		0.997	0.990		mg/L	0.7	20	10-AUG-12
Potassium (K)-Total		4.1	4.1		mg/L	1.2	20	10-AUG-12
Selenium (Se)-Total		<0.00040	<0.00040	RPD-NA	mg/L	N/A	20	10-AUG-12
Silicon (Si)-Total		<1.0	<1.0	RPD-NA	mg/L	N/A	20	10-AUG-12
Silver (Ag)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	10-AUG-12
Sodium (Na)-Total		38.5	39.6		mg/L	2.8	20	10-AUG-12
Strontium (Sr)-Total		1.42	1.42		mg/L	0.2	20	10-AUG-12
Thallium (TI)-Total		<0.00030	<0.00030	RPD-NA	mg/L	N/A	20	10-AUG-12
Tin (Sn)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	10-AUG-12
Titanium (Ti)-Total		0.0043	0.0040		mg/L	9.2	20	10-AUG-12
Tungsten (W)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	10-AUG-12
Uranium (U)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	10-AUG-12
Vanadium (V)-Total		<0.0010	0.0010	RPD-NA	mg/L	N/A	20	10-AUG-12
Zinc (Zn)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	10-AUG-12
Zirconium (Zr)-Total		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	10-AUG-12
WG1523188-2 LCS								
Aluminum (Al)-Total			104.0		%		80-120	10-AUG-12
Antimony (Sb)-Total			101.6		%		70-130	10-AUG-12
Arsenic (As)-Total			101.0		%		70-130	10-AUG-12
Barium (Ba)-Total			102.6		%		70-130	10-AUG-12
Beryllium (Be)-Total			109.7		%		70-130	10-AUG-12
Bismuth (Bi)-Total			100.3		%		70-130	10-AUG-12
Boron (B)-Total			102.6		%		70-130	10-AUG-12
Cadmium (Cd)-Total			103.4		%		70-130	10-AUG-12
Calcium (Ca)-Total			106.1		%		70-130	10-AUG-12
Chromium (Cr)-Total			99.7		%		70-130	10-AUG-12
Cobalt (Co)-Total			104.7		%		70-130	10-AUG-12
Copper (Cu)-Total			103.3		%		70-130	10-AUG-12
Iron (Fe)-Total			101.8		%		70-130	10-AUG-12

Workorder: L1190638 Report Date: 15-AUG-12 Page 6 of 12

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: DAVE MORLOCK

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-TOT-WT	Water							
Batch R2414176								
WG1523188-2 LCS			100 6		0/		70.400	
Magnesium (Mg)-Total			99.7		%		70-130	10-AUG-12
Magnesian (Mg) Total			103 3		%		70-130	10-AUG-12
Malybdenum (Mo)-Total			93.4		%		70-130	10-AUG-12
Nickel (Ni)-Total			104 9		%		70-130	10-AUG-12
Phosphorus (P)-Total			1134		%		70-130	10-AUG-12
Potassium (K)-Total			100.9		%		70-130	10-AUG-12
Selenium (Se)-Total			100.9		70 0/_		70-130	10-AUG-12
Selement (Se)-Total			109.1		%		70-130	10-AUG-12
Silver (Ag)-Total			103.1		%		70-130	10-AUG-12
Sodium (Na)-Total			98.4		%		70-130	10-AUG-12
Strontium (Sr)-Total			96.2		%		70-130	10-AUG-12
Thallium (TI)-Total			101 4		%		70-130	10-AUG-12
Tin (Sn)-Total			98.9		%		70-130	10-AUG-12
Titanium (Ti)-Total			101 5		%		70-130	10-AUG-12
Tungsten (W)-Total			97.3		%		70-130	10-AUG-12
Uranium (U)-Total			97.5 103.1		%		70-130	10-AUG-12
Vanadium (V)-Total			100.1		%		70-130	10-AUG-12
Zinc (Zn)-Total			104.9		%		70-130	10-AUG-12
Zirconium (Zr)-Total			89.0		%		70-130	10-AUG-12
WG1523188-1 MB			00.0		,0		70-150	10-200-12
Aluminum (Al)-Total			<0.010		mg/L		0.01	10-AUG-12
Antimony (Sb)-Total			<0.0050		mg/L		0.005	10-AUG-12
Arsenic (As)-Total			<0.0010		mg/L		0.001	10-AUG-12
Barium (Ba)-Total			<0.010		mg/L		0.01	10-AUG-12
Beryllium (Be)-Total			<0.0010		mg/L		0.001	10-AUG-12
Bismuth (Bi)-Total			<0.0010		mg/L		0.001	10-AUG-12
Boron (B)-Total			<0.050		mg/L		0.05	10-AUG-12
Cadmium (Cd)-Total			<0.000090)	mg/L		0.00009	10-AUG-12
Calcium (Ca)-Total			<0.50		mg/L		0.5	10-AUG-12
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	10-AUG-12
Cobalt (Co)-Total			<0.00050		mg/L		0.0005	10-AUG-12
Copper (Cu)-Total			<0.0010		mg/L		0.001	10-AUG-12
Iron (Fe)-Total			<0.050		mg/L		0.05	10-AUG-12

Test

Quality Control Report

Workorder: L1190638 Report Date: 15-AUG-12 Page 7 of 12 LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: DAVE MORLOCK Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TOT-WT Water Batch R2414176 WG1523188-1 MB Lead (Pb)-Total < 0.0010 0.001 mg/L 10-AUG-12 Magnesium (Mg)-Total <0.50 mg/L 0.5 10-AUG-12 Manganese (Mn)-Total < 0.0010 mg/L 0.001 10-AUG-12 Molybdenum (Mo)-Total < 0.0010 0.001 mg/L 10-AUG-12 Nickel (Ni)-Total 0.002 <0.0020 mg/L 10-AUG-12 Phosphorus (P)-Total < 0.050 mg/L 0.05 10-AUG-12 1 Potassium (K)-Total <1.0 mg/L 10-AUG-12 Selenium (Se)-Total < 0.00040 0.0004 mg/L 10-AUG-12 Silicon (Si)-Total <1.0 mg/L 1 10-AUG-12 Silver (Ag)-Total < 0.00010 mg/L 0.0001 10-AUG-12 Sodium (Na)-Total <0.50 mg/L 0.5 10-AUG-12 Strontium (Sr)-Total < 0.0010 mg/L 0.001 10-AUG-12 Thallium (TI)-Total < 0.00030 0.0003 mg/L 10-AUG-12 Tin (Sn)-Total < 0.0010 0.001 mg/L 10-AUG-12 Titanium (Ti)-Total < 0.0020 mg/L 0.002 10-AUG-12 Tungsten (W)-Total 0.01 < 0.010 mg/L 10-AUG-12 Uranium (U)-Total 0.005 < 0.0050 mg/L 10-AUG-12 Vanadium (V)-Total <0.0010 mg/L 0.001 10-AUG-12 Zinc (Zn)-Total < 0.0030 0.003 mg/L 10-AUG-12 Zirconium (Zr)-Total < 0.0040 0.004 mg/L 10-AUG-12 WG1523188-5 MS WG1523188-3 106.8 % Aluminum (AI)-Total 70-130 10-AUG-12 Antimony (Sb)-Total 103.5 % 70-130 10-AUG-12 Arsenic (As)-Total 101.5 % 70-130 10-AUG-12 Barium (Ba)-Total 99.1 % 70-130 10-AUG-12 Beryllium (Be)-Total 108.3 % 70-130 10-AUG-12 Bismuth (Bi)-Total 99.3 % 70-130 10-AUG-12 Boron (B)-Total 105.5 % 70-130 10-AUG-12 Cadmium (Cd)-Total 101.0 % 70-130 10-AUG-12 Calcium (Ca)-Total N/A MS-B % -10-AUG-12 Chromium (Cr)-Total % 100.4 10-AUG-12 70-130 Cobalt (Co)-Total 103.4 % 70-130 10-AUG-12 Copper (Cu)-Total 101.6 % 70-130 10-AUG-12 Iron (Fe)-Total 99.9 % 70-130 10-AUG-12

Test

Quality Control Report

Workorder: L1190638 Report Date: 15-AUG-12 Page 8 of 12 LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 DAVE MORLOCK Contact: Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-TOT-WT Water Batch R2414176 WG1523188-5 MS WG1523188-3 Lead (Pb)-Total % 98.6 70-130 10-AUG-12 Magnesium (Mg)-Total N/A MS-B % 10-AUG-12 Manganese (Mn)-Total 102.3 % 70-130 10-AUG-12 Molybdenum (Mo)-Total 95.4 % 10-AUG-12 70-130 Nickel (Ni)-Total % 102.7 70-130 10-AUG-12 Phosphorus (P)-Total 117.2 % 70-130 10-AUG-12 Potassium (K)-Total N/A MS-B % 10-AUG-12 Selenium (Se)-Total 98.2 % 10-AUG-12 70-130 Silicon (Si)-Total 127.1 % 70-130 10-AUG-12 Silver (Ag)-Total 100.0 % 70-130 10-AUG-12 Sodium (Na)-Total N/A MS-B % 10-AUG-12 -Strontium (Sr)-Total N/A MS-B % 10-AUG-12 Thallium (TI)-Total 100.5 % 70-130 10-AUG-12 Tin (Sn)-Total 97.3 % 70-130 10-AUG-12 Titanium (Ti)-Total 99.8 % 70-130 10-AUG-12 Tungsten (W)-Total 98.7 % 70-130 10-AUG-12 Uranium (U)-Total % 104.2 70-130 10-AUG-12 Vanadium (V)-Total 103.3 % 70-130 10-AUG-12 Zinc (Zn)-Total 105.4 % 70-130 10-AUG-12 Zirconium (Zr)-Total 87.4 % 70-130 10-AUG-12 NH3-WT Water Batch R2413511 WG1523242-2 CVS % Ammonia, Total (as N) 100.8 85-115 09-AUG-12 WG1523242-3 DUP L1190086-1 Ammonia, Total (as N) mg/L < 0.25 < 0.25 0.1 20 09-AUG-12 L1190251-1 WG1523242-5 DUP 0.112 mg/L Ammonia, Total (as N) 0.111 1.0 20 09-AUG-12 WG1523242-7 DUP L1190626-7 < 0.050 < 0.050 Ammonia, Total (as N) **RPD-NA** mg/L N/A 20 09-AUG-12 WG1523242-1 MB Ammonia, Total (as N) < 0.050 mg/L 0.05 09-AUG-12

WG1523242-4 MS Ammonia, Total (as N)

L1190251-1 WG1523242-6 MS

L1190086-1

88.8

%

75-125

09-AUG-12

REDOX-POTENTIAL-WT

Water

Quality Control Report

		Workorder:	L119063	8	Report Date:	15-AUG-12		Page 9 of 12
Client: LVM 353 KITC	INC. BRIDGE ST. E. CHENER ON N2K 2	Y5						
Contact: DAV	'E MORLOCK							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-WT	Water							
Batch R2413	3511							
WG1523242-6 M Ammonia, Total (as	IS s N)	L1190251-1	80.8		%		75-125	09-AUG-12
WG1523242-8 M	IS	L1190626-7						
Ammonia, Total (a	s N)		88.7		%		75-125	09-AUG-12
P-ORTHO-LOW-WT	Water							
Batch R2414	4025							
WG1524092-3 D Phosphate-P (ortho	UP o)	L1189402-1 0.0617	0.0623		mg/L	1.0	20	10-AUG-12
WG1524092-5 D Phosphate-P (ortho	UP o)	L1191043-1 0.0033	0.0034		mg/L	4.8	20	10-AUG-12
WG1524092-7 D Phosphate-P (ortho	UP o)	L1191063-7 0.0038	0.0035		mg/L	8.0	20	10-AUG-12
WG1524092-9 D Phosphate-P (ortho	UP o)	L1191243-2 0.402	0.405		mg/L	0.7	20	10-AUG-12
WG1524092-2 L Phosphate-P (ortho	CS D)		107.7		%		80-120	10-AUG-12
WG1524092-1 M Phosphate-P (ortho	IB o)		<0.0030		mg/L		0.003	10-AUG-12
WG1524092-10 M Phosphate-P (ortho	IS o)	L1191243-2	N/A	MS-B	%		-	10-AUG-12
WG1524092-4 M Phosphate-P (ortho	IS o)	L1189402-1	N/A	MS-B	%		-	10-AUG-12
WG1524092-6 M Phosphate-P (ortho	IS D)	L1191043-1	91 1	-	%		70-130	10 AUG 12
WG1524092-8 M	IS	L1191063-7	02.6		0/		70-130	10-AUG-12
	5)		93.0		70		70-130	10-AUG-12
PH-ALK-WT	Water							
Batch R2413 WG1523327-2 D	3968 UP	L1190638-1	7 99		nH units	0.4	20	00 4110 12
WG1523327-1 L рН	cs	1.00	7.01		pH units	0.4	6.9-7.1	09-AUG-12

 Batch
 R2414405

 WG1524608-1
 DUP
 L1189217-43

 Redox Potential
 88.0
 92.0
 mV
 4.4
 25
 10-AUG-12

		Workorder:	L119063	38	Report Date: 15-	AUG-12		Page 10 of 12
Client:	LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K DAVE MORI OCK	C 2Y5						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analvzed
	WT Water							
Batch	R2414154							
WG152339 Total Diss	99-3 DUP solved Solids	L1190086-2 290	290		mg/L	0.0	20	10-AUG-12
WG152339 Total Diss	99-4 DUP solved Solids	L1190086-3 318	300		mg/L	5.8	20	10-AUG-12
WG152339 Total Diss	99-2 LCS solved Solids		93.3		%		85-115	10-AUG-12
WG152339 Total Diss	99-1 MB solved Solids		<20		mg/L		20	10-AUG-12
TC-MF-WT	Water							
Batch	R2414049							
WG15233 Total Coli	78-2 DUP forms	L1190638-1 0	0		CFU/100mL	0.0	50	10-AUG-12
WG15233 Total Coli	78-1 MB forms		0		CFU/100mL		1	10-AUG-12
TCB-MF-WT	Water							
Batch	R2414049							
WG15233 Total Coli	78-2 DUP form Background	L1190638-1 5	11	G	CFU/100mL	75	50	10-AUG-12
WG15233 Total Coli	78-1 MB form Background		0		CFU/100mL		1	10-AUG-12
TURBIDITY-V	VT Water							
Batch	R2414621							
WG15229 Turbidity	65-2 CVS		102.0		%		85-115	08-AUG-12
WG15229 Turbidity	65-3 DUP	L1190105-1 0.11	0.12		NTU	8.7	20	08-AUG-12
WG15229 Turbidity	65-1 MB		<0.10		NTU		0.1	08-AUG-12

Workorder: L1190638

Report Date: 15-AUG-12

Client:	LVM INC.
	353 BRIDGE ST. E.
	KITCHENER ON N2K 2Y5
Contact:	DAVE MORLOCK

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLM	Detection Limit Adjusted For Sample Matrix Effects
G	QC result did not meet ALS DQO. Refer to narrative comments for further information.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1190638

Report Date: 15-AUG-12

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: DAVE MORLOCK

Page 12 of 12

Hold Time Exceedances:

Physical Tests Redox Potential			Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Redox Potential								
		1	08-AUG-12 07:54	10-AUG-12 16:09	0.25	56	hours	EHTR-FM
Legend & Qualifier	efinition	6:						
EHTR-FM:ExceedEHTR:ExceedEHTL:ExceedEHTL:ExceedEHT:ExceedRec. HT:ALS re	led ALS re led ALS re led ALS re led ALS re commend	ecommende ecommende ecommende ecommende ed hold time	ed hold time prior to san ed hold time prior to san ed hold time prior to ana ed hold time prior to ana e (see units).	nple receipt. Field Mea nple receipt. Ilysis. Sample was rec Ilysis.	asurement :	recommendeo than 24 hours	d. prior to ex	piry.

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1190638 were received on 08-AUG-12 11:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Phone: (519) 8	86-6910			Δ		Г <u></u>	CHAIN OF CUSTO	DDY / A	NAL	YTIC	AL SERVI	CES	REOU	EST FO	RM P	C of C #	¢ 00000
Fax: (519) 886- Toll Free: 1-80	9047 0-668-9878	A THE ARE LEAD	Enui	ALS	enta	Note: all TAT Qu statutory holida	loted material is in business d ys and weekends. TAT sample	ays which	exclude		Specify d	ate	Serv		sted	age of	-
COMPANY NAME	1 ()	14				or Saturday/Sur	iday begin the next day.	steleived	past 3:0	0 pm	require	d	5 day (re	gular)	10	Next day TAT (10)	0%)
OFFICE		IM				CRITERIA	Criteria on report YES	NO					3-4 day (.	25%)		Same day TAT (20	
	Kih	lune	/			Reg 153/04 🗋	Reg 511/09				ANA	LYSIS	REQUEST			PLEASE INDICATE	0%)
ROJECT MANAGE	R In O					Table 1 2	3 4 5 6 7	8 9						T T		PRESERVED OR BO	TH
ROIECT # 14	Kac Va	re l	iorlo	ck		TCLP MIS	5A PWOO		1.5	1						< (F, P, F/P)	
HONE /60	-10000/45	-0-0	0-4	00		ODWS 0	THER		1	9						SUBMISSION #:	
579, 741	. 1313	FAX CIG	7/	110		+]	2							11100	$n \sim$
CCOUNT #		.31 /	74	1.14	111	REPORT	FORMAT/DISTRIBUTION			P						ENTERED TO C	28
UOTATION #	- .						FAX	₂₂	1							LINTERED B	
		2	050	70		SELECT: PDF	BOTH	AINE	00						[DATE/TIME ENTERE	D:
Samela D	AMPLING INFOR	MATIO	N			EMAIL 1	BOTH	'INC	1							8-A	
Sample Date	/Time	TYPE		MATR	IX	EMAIL 2			1								19-1
Det. (1)	Time (24hr)	AB B	TER		ĒŖ				e e							SIN #: 27	\mathbf{C}
Date (dd-mm-yy)	(hh:mm)	3 8	A N	SO	Ē	SAMPLE DESCR	IPTION TO APPEAR ON REPOR	T N	6,						-		<u>ノ</u> `
012 00-00	7:54		V			Water Long	71.1.2.1	ž	0							COMMENTS	
	┟─────┟╌					ing rap	hepit realment	5_	V				-++		╉╼╼╂╸		
							- grain J		┼──┤				+-+		+-+		
			<u> </u>						╋╼╌╋	-+-					┼──┼─		
		+	+						┼──┼								
									┠──┼		╺┼╌┾╴		++				
												1	1 1	Ι			
		+]{]]]									
		+							L1	1906:	38-COFC						
		╉╼╌┨						,									
		┼╌┤		-+	-+-			-++		-+	++	+	++-				
SPECIAL	INSTRUCTIONS/C	OMMENT	s					-+-+		-+	++		╉╼╌╂╴				-+
					A	e any samples take	The QUESTIONS BELOW MUST BE	ANSWERED	FORWAT	TER SAM	PLES (CHECK	Yes OR					-+
					If	yes, an authorized	drinking water COC MUST L	m?			Y	es 🖬 🛛	No D		FRO	SAMPLE CONDIT	ION
ED BY:					15	the water sampled	intended to be potable for hi	used for t	nis sub	mission		_	•		COLI	ים יים ער יים	MEAN TEM
UISHED BY:	to All	gen (2		DA	TE & TIME RE	CEIVED BY:		amptio	nr 1	Y.	es 🚺 I	Noロ		COO		hĩ
Ka	the Mi	au	2		DA	TE & TIME RE	CEIVED AT LAB BY:			211		DATE (& TIME		OBSE	RVATIONS	
te number must be n	rovidod ++	ni ar a chair in tha chair an a			- <u>[</u>					31		DATE	& TAME	12	Yes	No 🛄	PI
and be p	onded to ensure p	roper pri	cing		2. T	AT may vary depende	nt on complexity of the second s	ی ہے ویروں یہ اور یہ					- y-y-	112-	IT yes	add SIF	150

LVM INC. ATTN: DAVE MORLOCK 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 05-SEP-12 Report Date: 11-SEP-12 12:38 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1204056

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 205030 160-P0000145-0-00-400 133306

Nary Smith

NANCY SMITH Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1204056-1 SURFACE WATER @ CREEK Sampled By: KAREN THRAMS on 05-SEP-12 @ 07:30 Matrix: WATER)						
Physical Tests							
Total Suspended Solids	15.2		3.0	mg/L	08-SEP-12	11-SEP-12	R2433297
Anions and Nutrients							
Ammonia, Total (as N)	<0.050		0.050	mg/L		06-SEP-12	R2430730
Nitrate and Nitrite as N	7.1		0.20	mg/L		06-SEP-12	
Nitrate-N	7.10		0.10	mg/L	05-SEP-12	05-SEP-12	R2430826
Nitrite-N	<0.10		0.10	mg/L	05-SEP-12	05-SEP-12	R2430826
Total Kjeldahl Nitrogen	0.39		0.15	mg/L	05-SEP-12	06-SEP-12	R2430803
Total Phosphorus	0.0044		0.0030	mg/L		07-SEP-12	R2431519
Bacteriological Tests							
E. Coli	220	DLM	10	CFU/100mL	05-SEP-12	06-SEP-12	R2430527
Total Coliforms	9700	DLM	100	CFU/100mL	05-SEP-12	06-SEP-12	R2430521
Aggregate Organics							
BOD Carbonaceous	<2.0		2.0	mg/L	05-SEP-12	10-SEP-12	R2432703

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

QC Samples w	ith Qualifiers & Co	mments	:						
QC Type Descri	ption	Para	ameter		Qualifier	Applies to Sample Number(s)			
Matrix Spike		Amr	nonia, Total (as	N)	MS-B	L1204056-1			
Matrix Spike		Tota	l Phosphorus		MS-B	L1204056-1			
Matrix Spike		Tota	l Phosphorus		MS-B	L1204056-1			
Qualifiers for li	ndividual Samples	Listed:							
Sample Numbe	Client ID		Qualifier	Description					
L1204056-1	SURFACE WATER	@ CREE	CINT	Cooling initiated	d. Samples we	ere packaged with ice or ice packs upon receipt.			
Sample Param	eter Qualifier key li	sted:							
Qualifier	Description								
DLM	Detection Limit Adjus	ted For S	ample Matrix Ef	ffects					
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.								
Test Method R	eferences:								
ALS Test Code	Matrix	Test De	escription	Ι	Method Refere	ence**			
BOD-C-WT Sample is incul	Water bated at 20°C– 1 C for	BOD C 5 days u	arbonaceous sing a nitrificatio	on inhibitor.	APHA 5210 B	(CBOD)			
EC-MF-WT A 100mL volum Method ID: WT	Water ne of sample is filtered -TM-1200	E. coli through a	membrane, the	e membrane is p	SM 9222D laced on mFC·	-BCIG agar and incubated at @44.5–0.2°C for 24–2h.			
ETL-N2N3-WT	Water	Calcula	te from NO2 + I	NO3	APHA 4110 B				
NH3-WT Sample is mea colorimetrically	Water sured colorimetrically.	Ammor When sar	nia, Total as N mple is turbid a	distillation step is	EPA 350.1 s required, san	nple is distilled into a solution of boric acid and measured			
NO2-WT A filtered water	Water sample (drinking wate	Nitrite-N rs-unfilter	N ed) is analyzed	by ion chromato	EPA 300.0 (IC graphy.	;)			
NO3-WT A filtered water	Water sample (drinking wate	Nitrate- rs-unfilter	N ed) is analyzed	by ion chromato	EPA 300.0 (IC graphy.	;)			
P-TOTAL-LOW-	WT Water	Phosph	orus, Total, Lov	w Level	APHA 4500-P	BE			
SOLIDS-TSS-W A well-mixed sa four hours or ur	T Water ample is filtered throug ntil a constant weight is	Susper h a weigh s achieved	ded solids ed standard gla I.	ss fibre filter and	APHA 2540 D the residue re	-Gravimetric etained is dried in an oven at 105–5°C for a minimum of			
TC-MF-WT A 100mL volum Method ID: WT	Water ne of sample is filtered -TM-1200	Total C through a	Coliforms membrane, the	e membrane is p	SM 9222B laced on mEN	DO LES agar and incubated at 35–0.5°C for 24–2h.			
TKN-WT Sample is dige by the instrume	Water sted to convert the TKI ent is proportional to the	Total K N to amm e concent	ieldahl Nitrogen onium sulphate ration of ammo	. The ammonia io nium sulphate in	APHA 4500-N ons are heated the sample an	t to produce a colour complex. The absorbance measured id is reported as TKN.			
** ALS test metho	ds may incorporate mo	odification	s from specified	d reference metho	ods to improve	e performance.			
-									

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA
Chain of Custody Numbers:	

133306

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

	Workd	order: L120405	6 Re	port Date: 11-SI	EP-12	Pag	e 1 of 4
Client: LVM INC. 353 BRID KITCHEN	GE ST. E. ER ON N2K 2Y5						
Contact: DAVE MO	RLOCK						
Test	Matrix Referen	nce Result	Qualifier	Units	RPD	Limit	Analyzed
BOD-C-WT	Water						
Batch R2432703							
WG1540067-3 LCS BOD Carbonaceous		108.6		%		85-115	10-SEP-12
WG1540067-1 MB BOD Carbonaceous		<2.0		mg/L		2	10-SEP-12
EC-MF-WT	Water						
Batch R2430527							
WG1539986-1 MB E. Coli		0		CFU/100mL		1	06-SEP-12
WG1539986-3 MB E. Coli		0		CFU/100mL		1	06-SEP-12
NH3-WT	Water						
Batch R2430730							
WG1540788-2 CVS Ammonia, Total (as N)		94.1		%		85-115	06-SEP-12
WG1540788-3 DUP Ammonia, Total (as N)	L1204 (<0.050	956-1 <0.050	RPD-NA	mg/L	N/A	20	06-SEP-12
WG1540788-1 MB Ammonia, Total (as N)		<0.050		mg/L		0.05	06-SEP-12
WG1540788-10 MS Ammonia, Total (as N)	L11997	'87-1 N/A	MS-B	%		-	06-SEP-12
WG1540788-4 MS Ammonia, Total (as N)	L12040	156-1 88.4		%		75-125	06-SEP-12
WG1540788-6 MS Ammonia, Total (as N)	L12044	83-5 91.9		%		75-125	06-SEP-12
WG1540788-8 MS	L12047	74-3 79.3		%		75-125	06-SEP-12
NO2-WT	Water					75 125	00 021 12
Batch R2430826							
WG1539880-3 LCS Nitrite-N		95.8		%		85-115	05-SEP-12
WG1539880-4 LCSD Nitrite-N	WG15 3 95.8	9880-3 97		%	0.8	25	05-SEP-12
WG1539880-1 MB Nitrite-N		<0.10		mg/L		0.1	05-SEP-12

NO3-WT

Water

		Workorder: L1204056			Report Date: 11	-SEP-12	Page 2 of 4		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
NO3-WT	Water								
Batch R2430826 WG1539880-3 LCS Nitrate-N			97.9		%		85-115	05-SEP-12	
WG1539880-4 LCSD Nitrate-N		WG1539880-3 97.9	99		%	1.2	25	05-SEP-12	
WG1539880-1 MB Nitrate-N			<0.10		mg/L		0.1	05-SEP-12	
P-TOTAL-LOW-WT	Water								
Batch R2431519 WG1541018-2 LCS Total Phosphorus			93.0		%		80-120	07-SEP-12	
WG1541018-1 MB Total Phosphorus			<0.0030		mg/L		0.003	07-SEP-12	
WG1541018-4 MS Total Phosphorus		L1203266-1	N/A	MS-B	%		-	07-SEP-12	
WG1541018-6 MS Total Phosphorus		L1203266-21	N/A	MS-B	%		-	07-SEP-12	
SOLIDS-TSS-WT	Water								
Batch R2433297 WG1542389-1 LCS Total Suspended Solids			97.2		%		80-120	11-SEP-12	
WG1542389-2 MB Total Suspended Solids			<3.0		mg/L		3	11-SEP-12	
TC-MF-WT	Water								
Batch R2430521 WG1539984-1 MB Total Coliforms			0		CFU/100mL		1	06-SEP-12	
WG1539984-3 MB Total Coliforms			0		CFU/100mL		1	06-SEP-12	
TKN-WT	Water								
Batch R2430803 WG1540642-4 CRM Total Kieldahl Nitrogen		ERA525	90.1		%		80-120	06-SEP-12	
WG1541027-1 CVS Total Kjeldahl Nitrogen			93.0		%		75-125	06-SEP-12	
WG1540642-2 LCS Total Kjeldahl Nitrogen			91.0		%		80-120	06-SEP-12	
WG1540642-1 MB									

			Workorder:	Workorder: L1204056			11-SEP-12	P	age 3 of 4
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-WT		Water							
Batch	R2430803								
WG15406 Total Kjel	42-1 MB dahl Nitrogen			<0.15		mg/L		0.15	06-SEP-12

Workorder: L1204056

Report Date: 11-SEP-12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

60 NORTHLAND WATERLOO, ON	0 NORTHLAND ROAD, UNIT 1 VATERLOO, ON N2V 2B8							L 3 3 3 U b C of C # 00000 CHAIN OF CUSTODY / ANALYTICAL SERVICES REQUEST FORM Page 1 of 1													
Phone: (519) 88	5-6910	and an and a second					Note: all TAT (——————————————————————————————————————	ער אר 	=K V I	CE3		JUE:	SI F		1 Pa	age <u>1</u> of <u>1</u>	
Fax: (519) 886-9	047	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		(ALS)	and the set of	statutory holic	uoted material is in business days	which exc	clude		Sp	ecify d	late	Service requested				d	2 day TAT (50%)	
Toll Free: 1-800-	668-9878		θ _{ων} , ε ,	وسه دو این کا	N KENNUT	///Een	or Saturday/Si	andav beain the next day.	ceivea pa:	st 3:00) pm	<u> </u>	require	:a	5 day (regular)			/	V	Next day TAT (100%)	
COMPANY NAME	TIVV	<u> </u>		<u> </u>			CRITERIA	Criteria en report VES						3-4 day (25%)				!		Same day TAT (200%)	
OFFICE		ن	<u>// </u>		<u> </u>		Peg 153/04 T						AN/	ALYSIS	SIS REQUEST				ļ	PLEASE INDICATE FILTER	, RED,
	Kita	vene	<u>r</u>				Table 1 7	kegsri/09 🖬 2 3 4 5 6 7 8	a							\Box				PRESERVED OR BOTH	
PROJECT MANAGER	n-ust	L	- de					\dashv		+	╂───		╂	┢───-	—	╂──	↓	\vdash	< (F, P, F/P)		
PROJECT # 11 p.c	Davia Davia	<u>- 70</u>	<u>a</u> w	<u>e k</u>	<u> </u>		- ODWS		12	i.		1							SUBMISSION #:		
PHONE							1										L1204051	1			
<u>519.741.1313</u> <u>519.741.5422</u>			22	REPO	RT FORMAT/DISTRIBUTION		1 2		25	50							ENTERED BY: Pr	<u> </u>			
ACCOUNT #									ERS	14		الجم	3							<u>F+1</u>	
QUOTATION #	JOTATION # PO # 205030			 -	SELECT: PDF		- IN	Ē	1	4-4	55	i	in S		'			DATE/TIME ENTERED:	า		
				<u> </u>	EMAIL 1		125		Ĩ,	3		20		1 '			5-Jepi	۷			
Sample Date	SAMPLING INFORMATION Sample Date/Time TYPE MATRIX				<u></u>	EMAIL 2	- Ū	7.1		差	ş.		三	5	1 '		ſ	BIN #:			
	Time (24hr)		<u> </u>	H H	T	Ť <u></u>	+					5	È	: 3	5	a	1!		L	155	
Date (dd-mm-yy)	(hh:mm)	COM	GRAF	WAT	SOL	OTHE	SAMPLE DES	SAMPLE DESCRIPTION TO APPEAR ON REPORT		1		E	العاد	i i	ě	30	is l		Γ		T
21-10-20	7:30		<u>├</u> ──	F	<u> </u>	Ĕ	- Burlage	Surlage the Ori		2	ĻŢ	2	_ *		<u>ل</u> ر	<u> </u>				COMMENTS	LABI
		·		<u> </u>	<u> </u>	+	- in pace i	wher w crek	<u> 4</u>	⊢Ľ	<u> </u>			~	~	~	~				11
		\square					<u> </u>			╂╾╾┥	┝──┦	⊢	+]	⊢			
	├ ────┤		\square	\Box						╉╾╴┫	┝──┤		+			+	_ 	⊢			
	├ ───┤	لا	\vdash	\vdash	└ '	['				t.,,,,,	 	+	+	-+	+	+		<u> </u>	-+		<u> </u>
	<u>├───</u> ┤		⊢]	⊢]	⊢—′	 '				1 					 ∎∎≣∎		+		-+		
	/ ł	\rightarrow	┌──┤	⊢	⊢′	├ ′	<u> </u>												-+-		┿
	·+		<u> </u>	<u> </u>	<u>ا</u> ــــــا	–	<u> </u>		<u> </u>		L	L1204056-C							+		+
		+	+	<u> </u>	<u>/</u>	<u>├</u> ─- /	<u> </u>						500-		5						+
		$\neg \uparrow$,	 +	<u> </u>		-+	┝──╆	+								\Box		+
						$ \Box $				┝──╁	+										
						\Box				┟──╉		-+-	-+	+-		\rightarrow	\rightarrow				
SPECIA									+-+	i+	-+	-+-	-+-	-+-	-+	-+-	-+		\rightarrow		<u> </u>
	INSTRUCTION	5/CUN	IMENT	<u>s</u>				THE QUESTIONS BELOW MUST BE /	ANSWERED) FORW	ATER	AMPLE	S (CHI	ECK Ye	s OR N	, 10)			+		
							Are any samples	taken from a regulated DW Syster	m?	_				Yes	🗘 Nc) (FR	OZEN	MEAN
							Is the water sam	zed drinking water COC MUST be	used for	this su	ubmiss	sion.							CC		TEMP
MPLED BY: Kare	Them	2-5				+	DATE & TIME	RECEIVED BY:	iman con	sumpt	ion?			Yes	O No	<u>) []</u>					10.5
LINQUISHED BY:	<u> </u>	<u> </u>			<u> </u>		DATE & TIME		·					D,	ATE & T	TIME			OF	SERVATIONS	INIT
tor Ka	ren 1 h	mh	<u> </u>						Λ.		_			D/	ATE &	TIME		2.21		s 🖾 No 🛄 🔰 🕴	KS
0uoto numbor must be	and the transferred strength of the strength o	e sa consigne.	are area						1000					SEPT5/12 8:35					<u> > ′</u>	es duu sir	

Please contact the lab to confirm TATs.

2 N 1

chain of custody in comments section.

SAGE CAMPGROUNDS ATTN: RONALD & TERESA SAGE 1912 WHISTLE BARE RD RR 2 CAMBRIDGE ON N1R 5S2 Date Received:29-APR-13Report Date:30-APR-13 14:47 (MT)Version:FINAL

Client Phone: 519-623-2463

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1294711 CC PROVIDED 765001708

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

765001708

CRITERIA REPORT

L1294711 CONTD.... Page 2 of 3 30-APR-13 14:50:46

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Spec	ific Limits	Analyzed	Batch
L1294711-1 ~D1 SITE 46 Sampled By: TERESA SAGE on 29-APR-1 Matrix: DISTRIBUTION	3 @ 10:55				STANDARDS	GUIDELINES		
Individual Analytes								
Total Coliforms and e.Coli by DC Agar			_					
E. Coli	0		0	CFU/100mL CFU/100mL	0		30-APR-13 30-APR-13	R2592749 R2592749
L1294711-2 ~R1 PUMPHOUSE Sampled By: TERESA SAGE on 29-APR-1 Matrix: RAW	3 @ 11:00		-		STANDARDS	GUIDELINES		
Total Coliform, e.Coli								
E. Coli	0		0	CFU/100mL	0		30-APR-13	R2592750
Total Coliforms	0		0	CFU/100mL	0		30-APR-13	R2592747

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

Reference Information

765001708

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
EC-MF-WT	Water	E. coli		SM 9222D
A 100mL volume of sau Method ID: WT-TM-120	mple is filtered 00	d through a membrane, the ι	membrane is placed on mFC-BCIG agar and	incubated at @44.5–0.2°C for 24–2h.
TC,EC-DC-WT	Water	Total Coliforms and e.Col	i by	MOE E3407
A 100mL volume of sa	mple is filtered	through a membrane, the i	membrane is placed on DC Media and incub	ated at 35–0.5°C for 24–2h.
TC-MF-WT	Water	Total Coliforms		SM 9222B
A 100mL volume of sat Method ID: WT-TM-120	mple is filtered 00	l through a membrane, the ι	membrane is placed on mENDO LES agar a	nd incubated at 35–0.5°C for 24–2h.

Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA	,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of criteria limits is provided as is without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Report Date: 30-APR-13 Workorder: L1294711 Page 1 of 2 SAGE CAMPGROUNDS Client: 1912 WHISTLE BARE RD RR 2 CAMBRIDGE ON N1R 5S2 Contact: **RONALD & TERESA SAGE** Test Matrix Reference Result Qualifier Units RPD Limit Analyzed

EC-MF-WT		Water						
Batch R2 WG1661868-2	592750 DUP		L1294909-14					
E. Coli			0	0	CFU/100mL	0.0	50	30-APR-13
WG1661868-1 E. Coli	MB			0	CFU/100mL		1	30-APR-13
WG1661868-3 E. Coli	MB			0	CFU/100mL		1	30-APR-13
TC,EC-DC-WT		Water						
Batch R2	592749							
WG1661864-2	DUP		L1294837-1					
Total Coliforms			0	0	CFU/100mL	0.0	30	30-APR-13
E. Coli			0	0	CFU/100mL	0.0	30	30-APR-13
WG1661864-1	МВ							
Total Coliforms				0	CFU/100mL		1	30-APR-13
E. Coli				0	CFU/100mL		1	30-APR-13
WG1661864-3	МВ							
Total Coliforms				0	CFU/100mL		1	30-APR-13
E. Coli				0	CFU/100mL		1	30-APR-13
TC-MF-WT		Water						
Batch R2	592747							
WG1661865-2	DUP		L1294909-12					
Total Coliforms			0	0	CFU/100mL	0.0	50	30-APR-13
WG1661865-1 Total Coliforms	MB			0	CFU/100mL		1	30-APR-13
WG1661865-3 Total Coliforms	MB			0	CFU/100mL		1	30-APR-13

Workorder: L1294711

Report Date: 30-APR-13

Client:	SAGE CAMPGROUNDS
•	1912 WHISTLE BARE RD RR 2
	CAMBRIDGE ON N1R 5S2
Contact:	RONALD & TERESA SAGE

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

DRINKING WATER CHAIN OF CUSTODY

PLEASE CIRCLE IF SAMPLES ARE SUBJECT TO REGULATION: 70/03 Reg318/319 C of A Warning Notice Posted Not R

S Enulconmental

ALS Waterloo, 60 Northland Rd. Unit 1, Waterloo, ON N2V 2B8 Ph: 519-886-6910 Fax: 519-886-9047 Toll-Free 1-800-668-9878

Please place regulated and non-regulated samples in SEPARATE SUBMISSIONS

				000 0010														
WORKS / CLIENT NAME	WORKS / C	CLIENT CONTACT		<u></u>	T	<u> </u>			A 11	U VOE						_		
SAGE CAMPGROUND WELL SUPPLY	RONAL	RONALD & TERESA SAGE						ate tes	ANA	ALYSE	S REQ	UESTE	D					FOR LAB USE ONLY
WORKS / CLIEN	WORK	S/CLIENT P	HONE / FA	X	Sample D D/R D T D D T T T T T													:
1912 WHISTLE BARE RD, CAMBRIDGE	(519) 62	23-2463/(519)	623-9850		Type*	10			+	D	D	T	T	<u> </u>	T			SUBMISSION NO.
WORKS NUMBER	HEALTI	H UNIT			1	١Ĕ		l Š				1					E E	LCG74711
765001708	Region	of Waterloo H	-1U		s	Ē	=	<u> </u>		e l	e	s,					E	LOGGED BY
WORKS CATEGORY	HEALTH	UNIT PHON	E/FAX		NER.	ပြီ	ပိ	8		E	١ <u>ڦ</u>	nic l	ics	1			e	H
SDWS	(519)-88	33-2008/(519)8	383-2226		IAT	Ш Ш	ш	ш,	e	es.	Se	rga	Jan			E	len len	DATETIME JOHN ADD 12
		Sampling D	ate/Time	Regulated	Ī	E	E	Ē	Ē	8	۳.	<u>n</u>	õ			for	₽p	27-71/11-15
SAMPLE DESCRIPTION	Residual	Data	T	Sample	P P	Ĩ	Į	1		Max	Ma)	23	24	_	e	iio	9	TEMPERATURE AT RECEIPT [C]
(This description will appear on the report)	(mg/L)	(w/mm/dd)	Time	Туре	1BEF	Ŭ	ŭ	ပိ	ate	S S	D D	ed	ed	iu	Did		Е	0.4c
	ļ	())		(R/T/D)	NN	10	Ē	12	Niti	E	Lea	Sch	Sch	bog Sod	ň	ec.	res	
SITE 46		12	1044				Τ								-	-		LAB ID
0		1-1-1-1-	10.51	D		 	X											l l
tumfitzy SE		13/04/29	11:00	R			X											2
					·		1~		┣									
PAYMENT ODTIONS																		
																	L	
Apply against my pre-p	payment				L129	9471	1-C	OFC										
Apply to this Card (plea	ase enter	Card Info belo	(wc															
🖵 Please make prepaγm	ent of \$	h	y the follow	ling moon	а <i>•</i>													
The second se	·····	0	y are ronow	my mean	5.							i						
La Mastercard		Visa		Cheque e	enclosed	t										2	H	
Credit Card #: 544	1 ins	- 1419	adda-		2/12	2						1						
		61771	<u>C' /0</u> ¢ 'E)	kpiry:	7/1-	<u> </u>	-											
SAMPLED BY (print)	* Sample	Type Legend	: R - Raw	Water T	- Treate	d So	urce	D -	Distr	ibuti	on Sa	mole	<u> </u>			·		
	ſ		LAB				Other (Comme	nts/Cau	tions (f	Please	identify	known	or susp	Dected	hazard	s)	
IERESA SALE		HPKE	M/13		- 4)	EP7	0022									-,	
SUBMITTED TO LAB BY (SIGNATURE)			<u>'/'</u>			\square	TSA	GE										
Viena la		XX	MA -	, -														
- since sing			<u> 1 V </u>	/			ronalc	l.sage	@syn	npatic	o.ca							
0					··								_					

SAGE CAMPGROUNDS ATTN: RONALD & TERESA SAGE 1912 WHISTLE BARE RD RR 2 CAMBRIDGE ON N1R 5S2 Date Received:27-MAY-13Report Date:29-MAY-13 15:07 (MT)Version:FINAL

Client Phone: 519-623-2463

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1306779 CC PROVIDED 765001708

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

765001708

CRITERIA REPORT

L1306779 CONTD.... Page 2 of 3 29-MAY-13 15:20:03

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Spec	cific Limits	Analyzed	Batch
L1306779-1 ~D1 SITE 47								
Sampled By: TERESA SAGE on 27-MAY-1	3 @ 11:40							
Matrix: DISTRIBUTION					STANDARDS	GUIDELINES		
Individual Analytes								
Total Coliforms and e.Coli by DC Agar								
Total Coliforms	0		0	CFU/100mL	0		28-MAY-13	R2619342
E. Coli	0		0	CFU/100mL	0		28-MAY-13	R2619342
L1306779-2 ~R1 PUMPHOUSE								
Sampled By: TERESA SAGE on 27-MAY-1	3 @ 11:50							
Matrix: RAW					STANDARDS	GUIDELINES	-	
Total Coliform, e.Coli								
E. Coli	0		0	CFU/100mL	0		28-MAY-13	R2619352
Total Coliforms	1		0	CFU/100mL	** 0		28-MAY-13	R2619348
L1306779-3 ~D1 SITE 47								
Sampled By: TERESA SAGE on 27-MAY-1	3 @ 11:45							
Matrix: DISTRIBUTION					STANDARDS	GUIDELINES		
Individual Analytes								
	2.30	PEHR	0.050	ma/l			28-MAY-13	R2620877
			0.000	ing, E			20 10 10	112020011
Sampled By: TERESA SAGE on 27-MAY-1	3 @ 11.47							
Matrix: DISTRIBUTION	0 6 11.47				STANDARDS	GUIDELINES		
							-	
	-10		1.0	ug/l	10		29 MAV 12	P2610126
	<1.0		1.0	ug/L	10		20-IMA 1-13	K2019130
L1306779-5 ~E1 PUMPHOUSE	0 @ 11.55							
Matrix: TREATED	3 @ 11.55				STANDARDS	GUIDELINES		
							-	
NO2-N+NO3-N (O.Reg 170/03)	4.45				10			
Nitrate and Nitrite as N	4.45		0.20	mg/L	10		29-MAY-13	
Nitrate-N (NO3-N)	4.45		0.10	mg/L	10		28-MAY-13	R2620895
Nitrite-N (NO2-N)	<0.10		0.10	mg/L	1		28-MAY-13	R2620895
Individual Analytes Chlorine, Free L1306779-4 ~D1 SITE 47 Sampled By: TERESA SAGE on 27-MAY-1 Matrix: DISTRIBUTION Individual Analytes Lead (Pb) L1306779-5 ~E1 PUMPHOUSE Sampled By: TERESA SAGE on 27-MAY-1 Matrix: TREATED NO2-N+NO3-N (O.Reg 170/03) Nitrate and Nitrite as N Nitrate-N (NO3-N) Nitrite-N (NO2-N)	2.30 3 @ 11:47 <1.0 3 @ 11:55 4.45 4.45 <0.10	PEHR	0.050	mg/L ug/L mg/L mg/L	STANDARDS 10 STANDARDS 10 10 10 1	GUIDELINES	28-MAY-13 28-MAY-13 28-MAY-13 28-MAY-13 28-MAY-13	R2620877 R2619136 R2620895 R2620895

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

Reference Information

765001708

Qualifiers for Sample Submission Listed:

	•			
Qualifier	Descript	ion		
CINT	Cooling	initiated. Samples were pack	aged with ice or ice packs upon receipt.	
Sample Param	eter Qualifier key	/ listed:		
Qualifier	Description			
PEHR	Parameter Exce	eded Recommended Holding	Time On Receipt: Proceed With Analysis As R	equested.
Methods Liste	ed (if applicable):			
ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
CL2-FREE-WT	Water	Free Chlorine		SM 4500-CL G, EPA 330.5
EC-MF-WT	Water	E. coli		SM 9222D
A 100mL volu Method ID: W	ime of sample is fi /T-TM-1200	iltered through a membrane,	the membrane is placed on mFC-BCIG agar an	d incubated at @44.5–0.2°C for 24–2h.
ETL-N2N3-WT	Water	Calculate from NO2 +	NO3	APHA 4110 B
NO2-WT	Water	Nitrite-N		EPA 300.0 (IC)
A filtered wate	er sample (drinking	g waters-unfiltered) is analyze	ed by ion chromatography.	
NO3-WT	Water	Nitrate-N		EPA 300.0 (IC)
A filtered wate	er sample (drinking	g waters-unfiltered) is analyze	ed by ion chromatography.	
PB-ONT-DW-WT	Water	Lead (O.Reg 170/03)		EPA 6020A
TC,EC-DC-WT	Water	Total Coliforms and e	.Coli by	MOE E3407
A 100mL volu TC-MF-WT	ime of sample is fi Water	iltered through a membrane, Total Coliforms	the membrane is placed on DC Media and incul	bated at 35–0.5°C for 24–2h. SM 9222B
A 100mL volu Method ID: W	ime of sample is fi /T-TM-1200	iltered through a membrane,	the membrane is placed on mENDO LES agar a	and incubated at 35–0.5°C for 24–2h.
			Laboratory Methods employed follow ir generally based on nationally or internationally or internationally or international or	n-house procedures, which are ationally accepted methodologies.
Chain of Cus	tody numbers:			
The last two l	letters of the abov	e test code(s) indicate the lal	poratory that performed analytical analysis for th	nat test. Refer to the list below:
Laboratory [Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT		ALS ENVIRONMENTAL - V ONTARIO, CANADA	VATERLOO,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of criteria limits is provided as is without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

			Workorder:	L1306779	- F	Report Date: 29-I	MAY-13		Page 1 of 5
Client:	SAGE CA 1912 WH CAMBRIE RONALD	MPGROUNDS ISTLE BARE RD DGE ON N1R 5S & TERESA SAGI	RR 2 2 =						
Toot		Metrix	Deference	Beault	Qualifier	Unito		Lingit	Analyzad
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL2-FREE-WT		Water							
Batch R WG1677331-2 Chlorine, Free	2620877 CVS			100.0		%		80-120	28-MAY-13
WG1677331-3 Chlorine, Free	DUP		L1306779-3 2.30	2.40		mg/L	4.3	20	28-MAY-13
WG1677331-1 Chlorine, Free	MB			<0.050		mg/L		0.05	28-MAY-13
EC-MF-WT		Water							
Batch R	2619352								
WG1676876-3	DUP		L1306797-2	0			0.0	50	00 MAX 40
	МВ		0	0		CF0/100mE	0.0	50	28-IMA Y-13
E. Coli				0		CFU/100mL		1	28-MAY-13
WG1676876-2 E. Coli	МВ			0		CFU/100mL		1	28-MAY-13
NO2-WT		Water							
Batch R	2620895								
WG1677549-5 Nitrite-N (NO2	DUP -N)		L1305633-1 <0.10	<0.10	RPD-NA	mg/L	N/A	25	28-MAY-13
WG1677549-6 Nitrite-N (NO2	DUP -N)		L1305647-3 <0.10	<0.10	RPD-NA	mg/L	N/A	25	28-MAY-13
WG1677549-7 Nitrite-N (NO2	DUP -N)		L1305895-3 <0.10	<0.10	RPD-NA	mg/L	N/A	25	28-MAY-13
WG1677549-2 Nitrite-N (NO2	LCS -N)			94.5		%		70-130	28-MAY-13
WG1677549-3 Nitrite-N (NO2	LCSD -N)		WG1677549-2 94.5	94.5		%	0.1	25	28-MAY-13
WG1677549-1 Nitrite-N (NO2	MB -N)			<0.10		mg/L		0.1	28-MAY-13
WG1677549-8 Nitrite-N (NO2	MS -N)		L1305895-3	93.1		%		70-130	28-MAY-13
NO3-WT		Water							
Batch R	2620895								
WG1677549-5 Nitrate-N (NO3	DUP 3-N)		L1305633-1 4.63	4.63		mg/L	0.0	25	28-MAY-13
WG1677549-7 Nitrate-N (NO3	DUP 3-N)		L1305895-3 <0.10	<0.10	RPD-NA	mg/L	N/A	25	28-MAY-13
WG1677549-9	DUP		L1306358-1						

		Workorder:	L130677	'9 R	eport Date: 29-	MAY-13		Page 2 of 5
Client: SAGE 1912 V CAMB Contact: BONA	CAMPGROUND WHISTLE BARE RIDGE ON N11	DS RD RR 2 R 5S2 SAGE						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analvzed
								·
NO3-WT	Water							
WG1677549-9 DU Nitrate-N (NO3-N)	95 P	L1306358-1 <0.10	<0.10	RPD-NA	mg/L	N/A	25	28-MAY-13
WG1677549-2 LCS Nitrate-N (NO3-N)	S		100.1		%		70-130	28-MAY-13
WG1677549-3 LC Nitrate-N (NO3-N)	SD	WG1677549-2 100.1	100.2		%	0.0	25	28-MAY-13
WG1677549-1 MB Nitrate-N (NO3-N)			<0.10		mg/L		0.1	28-MAY-13
WG1677549-8 MS Nitrate-N (NO3-N)		L1305895-3	93.7		%		70-130	28-MAY-13
PB-ONT-DW-WT	Water							
Batch R26191 WG1675733-6 CV3 Lead (Pb)	36 S		100.2		%		80-120	28-MAY-13
WG1675733-4 DU Lead (Pb)	P	WG1675733-3 <1.0	<1.0	RPD-NA	ug/L	N/A	20	28-MAY-13
WG1675733-2 LC3 Lead (Pb)	S		103.9		%		70-130	28-MAY-13
WG1675733-1 MB Lead (Pb)			<1.0		ug/L		1	28-MAY-13
WG1675733-5 MS Lead (Pb)		WG1675733-3	95.3		%		70-130	28-MAY-13
TC,EC-DC-WT	Water							
Batch R26193	42							
WG1676867-2 DU	Р	L1306794-2	0		CFU/100ml	0.0	30	29 MAV 12
E. Coli		0	0		CFU/100mL	0.0	30	28-MAY-13
WG1676867-1 MB Total Coliforms		-	0		CFU/100mL	0.0	1	28-MAY-13
E. Coli			0		CFU/100mL		1	28-MAY-13
WG1676867-3 MB Total Coliforms			0		CFU/100mL		1	28-MAY-13
E. Coli			0		CFU/100mL		1	28-MAY-13
TO NE 117	Matar							

TC-MF-WT

Water

			Workorder:	L130677	9	Report Date: 29-I	MAY-13		Page 3 of 5	,
Client:	SAGE C/ 1912 WH CAMBRI	AMPGROUNE IISTLE BARE	DS RD RR 2 R 5S2							
Contact:	RONALE	& TERESA S	SAGE							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
										_
TC-MF-WT		Water								
TC-MF-WT Batch	R2619348	Water								

WG1676872-1 Total Coliforms	MB 0		CFU/100mL	1	28-MAY-13
WG1676872-2 Total Coliforms	МВ	0	CFU/100mL	1	28-MAY-13

Quality Control Report Workorder: L1306779 Report Date: 29-MAY-13

Client:	SAGE CAMPGROUNDS
	1912 WHISTLE BARE RD RR 2
	CAMBRIDGE ON N1R 5S2
Contact:	RONALD & TERESA SAGE

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate
Sample I	Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

 Quality Control Report

 Workorder:
 L1306779
 Report Date:
 29-MAY-13

 SAGE CAMPGROUNDS
 1912 WHISTLE BARE RD RR 2
 Vertical and the second secon

Hold Time Exceedances:

		Sample						
ALS Produc	t Description	ID [.]	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Inorganic Pa	arameters							
Free Chlo	rine							
		3	27-MAY-13 11:45	28-MAY-13 14:58	0.25	27	hours	EHTR-FM
Legend & Q	ualifier Definitio	ns:						
EHTR-FM: EHTR: EHTL: EHT: Rec. HT:	Exceeded ALS Exceeded ALS Exceeded ALS Exceeded ALS ALS recommen	recommende recommende recommende recommende ded hold time	ed hold time prior to san ed hold time prior to san ed hold time prior to ana ed hold time prior to ana ed hold time prior to ana e (see units).	nple receipt. Field Meanple receipt. Ilysis. Sample was rec Ilysis.	asurement ceived less	recommended	d. s prior to ex	piry.

Notes*:

Client:

Contact:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1306779 were received on 27-MAY-13 12:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

DRINKING WATER CHAIN OF CUSTODY

PLEASE CIRCLE IF SAMPLES ARE SUBJECT TO REGULATION:
 Reg318/319
 C of A
 Warning Notice Posted
 Not Regula

 Please place regulated and non-regulated samples in SEPARATE SUBMISSIONS
 C
 C
 C
 Not Regulated

ALS Waterloo, 60 Northland Rd. Unit 1, Waterloo, ON N2V 2B8 Ph: 519-886-6910 Fax: 519-886-9047 Toll-Free 1-800-668-9878 S Enuironmental

WORKS / CLIENT NAME	WORKS / C	LIENT CONTACT								·								13700
SAGE CAMPGROUND WELL SUPPLY	RONAL	D & TERESA	SACE						ANA	LYSES	REQU	ESTEC)					FOR LAB USE ONLY
WORKS / CLIEN	WORK	S/CLIENT P	HONE / FA	Y	Sample	Please	indica	ate test	for ea	ch san T	ple by	Check	mark i	in the b	x be	low	-	
1912 WHISTLE BARE RD, CAMBRIDGE	(519) 6:	23-2463//519)6	22 0050		Type*	D	D/R	D	T	D	D	T	T	Т	Т			SUBMISSION NO.
WORKS NUMBER	HEALTI	H UNIT	23-9090	·····		Lo Lo		g							_		ы	14 506779
765001708	Region	of Waterloo H	41.8		Ś	<u> </u>)e)	e	s	i	l k	ີງ		P	LOGGED BY
WORKS CATEGORY	HEALTH	UNIT PHONE	E / FAX	<u></u>	NER	ပိ	ß	00		Tin	Ē	лiс	ics		12		e	<u> </u>
SDWS	(519)-88	519)-883-2008/(519)883-2226					ш _	ш	te	es.	es .	rga	Jan	4	10	ε	Sen	
	Chlorino	Sampling Da	Ö	orn	E E	E E	<u>kitri</u>	×	Ň	<u><u> </u></u>	ō		む	for	Ϋ́β	JF MATIS		
SAMPLE DESCRIPTION	Residual	Date		Sample	R O	-ii	olif	olife	1.6	May	Ma	23	24	E	4	ijo S	e S	LOC C
(This description will appear on the report)	(mg/L)	(yy/mm/dd)	Time	Type	MBE	U U	Ŭ	ŭ	rat	Σ) pg	hed	Jed	diu	Ť	al (Sen	10.6
0				(R/1/D)		1	۴	۴	ž	푸	Ë	Sci	Scl	Š	₹	Fec	Pre	
STEPT		13/05/22	11:40		٨		v											
P. D. I		1 - 10 -	1110		<u> </u>		^											
- IUMPHOUSE		13/05/27	11:50	R	<u> </u>		X											2
SITE 47	F	13/05/27	11:45	D.	1										7	-		2
SITE 47		12/05/22	11:12	7	j						$\overline{\mathbf{v}}$			-+				<u> </u>
PAYMENT OPTIONS		120001	/		/	LI					$\overline{\mathbf{N}}$							-)
Apply against my pre-p	avment																	
Apply to this Card (plos											0.0		.					
	ise enter	Card Into belo	w)															1 8 11 1 81 1 88 8 19
- riease make prepayme	ent of \$_	by	the follow	ing means	5 :						11 1							
W Mastercard	D.	Visa		Cheque e	nclosed	Ł							L	1306	77	9-C(OFC	
Credit Card #: <u>5446</u>	120	0 1449	0 B/Ex	piry: <u> </u>	17/	13	1											
SAMPLED BY (print):	Sample	Type Legend :	R - Raw	Water T	Treate	d Sou	urce	D - I	Distri	butic	on Sa	mnle						
TEDESA CAL	10	DATE RECEIVED AT L	LAB	<u>.</u>		C	Other C	ommer	nts/Cau	tions (F	Please i	dentify I	known	or susp	cted	hazard	ls)	
TUNUSA SAGE						1	EP70	022										
UBMITTED TO LAN BY: (SIGNATURE)		ECEIVED AT LAB	ot -		1 (2	,'	TSAC	GE										
Dale !		K	₩ è	HM H	441	5												
0		<u> </u>			\mathcal{D}	!r	onald	sage	@syn	npatic	<u>o.ca</u>							

.

MACONIC COLLEGE NAME

DRINKING WATER CHAIN OF CUSTODY

PLEASE CIRCLE IF SAMPLES ARE SUBJECT TO REGULATION: Reg 170/03 Reg 318/319 C of A Warning Notice Dested

ALS Environmental Ph: 5

ALS Waterloo, 60 Northland Rd. Unit 1, Waterloo, ON N2V 2B8 Ph: 519-886-6910 Fax: 519-886-9047 Toll-Free 1-800-668-9878
 Reg318/319
 C of A
 Warning Notice Posted
 Not Regulated

 Please place regulated and non-regulated samples in SEPARATE SUBMISSIONS
 Not Regulated
 Not Regulated

WORKS / CLIENT NAME	WORKS / (CLIENT CONTACT	·······		T		_*											
SAGE CAMPGROUND WELL SUPPLY	RONAL	D & TERESA	SAGE			Plose	e indic		ANA	ALYSE	SREQ	UESTE	D			·		FOR LAB USE ONLY
WORKS / CLIEN	WORK	S/CLIENT P	HONE / FA	x	Sample	Ticas		ale les	Torea	ach sar	mpie by	y Chec	kmark	in the	box be	elow		
1912 WHISTLE BARE RD, CAMBRIDGE	(519) 6	23-2463/(519)6	323.9850		Type*		D/R		<u> T</u>	D	D	T	T	T	Т			SUBMISSION NO.
WORKS NUMBER	HEALT	H UNIT	23-3030			l d	1	5 S					[1			Ш	LU 506779
765001708	Region	of Waterloo H				Т. 		0		e)	1	6					12	LOGGED BY
WORKS CATEGORY	HEALTI	HUNIT PHON	E/FAY		Ц.	0	3	8			<u>ä</u>	uic.	S	İ) e	KA
SDWS	(519)-8	83-2008/(519)8	83.2226		IAI	ш	ш́	ш	e	ŝ	S	rga	ani			-	en (DATE/TIME
	<u>[]]]]]]]]]]]]]]]]]]] </u>	Sampling D	ate/Time		CON	E	E	Ē	i <u>t</u>	ľ Ř.	Å	Ē	l S			L D	bs	JAMAY15
SAMPLE DESCRIPTION	Chlorine			Sample	Ŗ	EFC	life	륑	N.	Aax	/ax	33	54		a	i	e l	TEMPERATURE AT RECEIPT [C]
(This description will appear on the second	(mg/L)	Date	Time	Туре	BER	ပိ	ပီ	ပီ	ate	N S	E P	ba	ba	L.	P2	12	ence	10.6
(This description will appear on the report)	((yy////////////////////////////////////		(R/T/D)	WON	ă	ī	걸	Ę	E	ea	Sch.	ç	po	<u>S</u>	ece	res	t = 0
Pumptouse				-		<u> </u>		·		<u>-</u>	<u> </u>	- "	0	05	<u> </u>	<u> IL</u>		LAB ID
gin nog se		12/05/27	11:55	-87			ħ		X		-							5
9. 																	t	
					· · · · ·													
PAYMENT OPTIONS																		
- Apply against my pre-p	payment																	61 61 1 6 11 4 31 4 88 6 13
Apply to this Card (plea	ase entei	r Card Info belo	ow)															
🌿 Please make prepaym	ent of \$_	b	y the follow	ing means	S:													
DMastercard			-											L	130	6779	9-00	DFC
	4	158		Cheque e	nclosed	d												
Credit Card #: <u>5446</u>	2 120	20 1449	O42 bex	pirv; <i>†</i>	7/1	3												
	* Sample		· P - Paw	Water T			-											
SAMPLED BY (print):		DATE RECEIVED AT	LAB:	water i	reate	a so	Other C	D -	Distr	ibuti	on Sa	ample	e					
TERESA SALE							EP7(0022	nta/Cat	ations (i	riease	identity	Known	I OF SUS	pected	l hazaro	ds)	
SUBMITTED TO LABOR (SIGNATURE)		RECEIVED AT LAB B	Y - 1			~	TSA	GE										
SJAB /			RH	371	NAY	5												
			<u></u>	+	150		ronald	.sage	@syn	npatic	co.ca							
U																		

SAGE CAMPGROUNDS ATTN: RONALD & TERESA SAGE 1912 WHISTLE BARE RD RR 2 CAMBRIDGE ON N1R 5S2 Date Received:05-JUL-13Report Date:08-JUL-13 15:03 (MT)Version:FINAL

Client Phone: 519-623-2463

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1327776 NOT SUBMITTED 765001708

Nellie Gudzak Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CRITERIA REPORT

L1327776 CONTD.... Page 2 of 3 08-JUL-13 15:17:39

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Criteria Spe	cific Limits	Analyzed	Batch
L1327776-1 ~D1 SITE 80 Sampled By: TERESA SAGE on 05-JUL-13 Matrix: DISTRIBUTION	3 @ 12:55				STANDARDS	GUIDELINES		
Individual Analytes								
Chlorine, Free	1.38		0.050	mg/L			08-JUL-13	R2644947
Total Coliforms and e.Coli by DC Agar	0		0		0		00 11 10	D0044450
E. Coli	0		0	CFU/100mL	0		06-JUL-13 06-JUL-13	R2644459 R2644459
L1327776-2 ~R1 PUMPHOUSE Sampled By: TERESA SAGE on 05-JUL-13 Matrix: RAW	3 @ 13:10				STANDARDS	GUIDELINES		
Total Coliform, e.Coli								
E. Coli	0		0	CFU/100mL	0		06-JUL-13	R2644462
Total Coliforms	0		0	CFU/100mL	0		06-JUL-13	R2644461

* Detection Limit for result exceeds Criteria Specific Limit. Assessment against Criteria Limit cannot be made.

** Analytical result for this parameter exceeds Criteria Specific Limit listed on this report.

765001708

Reference Information

765001708

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On)
CL2-FREE-WT	Water	Free Chlorine		SM 4500-CL G, EPA 330.5
EC-MF-WT	Water	E. coli		SM 9222D
A 100mL volume of s Method ID: WT-TM-1	ample is filter	red through a membrane,	the membrane is placed on mFC-BCIG agar and	d incubated at @44.5-0.2°C for 24-2h.
TC,EC-DC-WT	Water	Total Coliforms and e	e.Coli by	MOE E3407
A 100mL volume of s	sample is filter	red through a membrane,	the membrane is placed on DC Media and incub	pated at 35–0.5°C for 24–2h.
TC-MF-WT	Water	Total Coliforms		SM 9222B
A 100mL volume of s Method ID: WT-TM-1	sample is filter 200	red through a membrane,	the membrane is placed on mENDO LES agar a	and incubated at 35–0.5°C for 24–2h.

Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

Chain of Custody numbers:

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO ONTARIO, CANADA	,	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of criteria limits is provided as is without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

E. Coli

Quality Control Report

					,				
			Workorder:	L1327776	6	Report Date: 08-JI	JL-13		Page 1 of 3
Client:	SAGE CA 1912 WH CAMBRIE	MPGROUNDS ISTLE BARE RD DGE ON N1R 55	RR 2						
Contact:	RONALD	& TERESA SAG	Ē						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL2-FREE-WT		Water							
Batch F WG1702665-2	R2644947 CVS								
Chlorine, Free	9			96.4		%		80-120	08-JUL-13
WG1702665-3 Chlorine, Free	DUP		L1327776-1 1.38	1.41		mg/L	2.2	20	08-JUL-13
WG1702665-1 Chlorine, Free	MB			<0.050		mg/L		0.05	08-JUL-13
EC-MF-WT		Water							
Batch F	R2644462								
WG1701733-2 E. Coli	DUP		L1327488-1 0	0		CFU/100mL	0.0	50	06-JUL-13
WG1701733-1 E. Coli	MB			0		CFU/100mL		1	06-JUL-13
WG1701733-3 E. Coli	MB			0		CFU/100mL		1	06-JUL-13
TC,EC-DC-WT		Water							
Batch F	R2644459								
WG1701729-2 Total Coliform	DUP		L1327412-1 0	0		CFU/100mL	0.0	30	06-JUL-13
E. Coli			0	0		CFU/100mL	0.0	30	06-JUL-13
WG1701729-1 Total Coliform	MB			0		CFU/100mL		1	06-JUL-13

WG1701729-3	MB							
Total Coliforms				0	CFU/100mL		1	06-JUL-13
E. Coli				0	CFU/100mL		1	06-JUL-13
TC-MF-WT		Water						
Batch R2	644461							
WG1701732-2	DUP		L1327336-1					
Total Coliforms			0	0	CFU/100mL	0.0	50	06-JUL-13
WG1701732-1	МВ							
Total Coliforms				0	CFU/100mL		1	06-JUL-13
WG1701732-3	MB							
Total Coliforms				0	CFU/100mL		1	06-JUL-13

0

CFU/100mL

1

06-JUL-13

Workorder: L1327776

Report Date: 08-JUL-13

Client: SAGE CAMPGROUNDS 1912 WHISTLE BARE RD RR 2 CAMBRIDGE ON N1R 5S2 Contact: RONALD & TERESA SAGE

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

LCSD Laboratory Control Sample Duplicate
	Quality	Control Report	
Workorder:	L1327776	Report Date:	08-JUL-13

Client: SAGE CAMPGROUNDS 1912 WHISTLE BARE RD RR 2 CAMBRIDGE ON N1R 5S2

RONALD & TERESA SAGE

Page 3 of 3

Hold Time Exceedances:

		Sample						
ALS Product	t Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Inorganic Pa	rameters							
Free Chlo	rine							
		1	05-JUL-13 12:55	08-JUL-13 12:53	0.25	72	hours	EHTR-FM
Legend & Qu	ualifier Definition	ıs:						
EHTR-FM:	Exceeded ALS	recommende	ed hold time prior to sar	nple receipt. Field Me	asurement	recommende	d.	
EHTR:	Exceeded ALS	recommende	ed hold time prior to sar	nple receipt.				
EHTL:	Exceeded ALS	recommende	ed hold time prior to ana	alysis. Sample was rec	ceived less	than 24 hours	prior to ex	piry.
EHT:	Exceeded ALS	recommende	ed hold time prior to ana	alysis.			•	
Rec. HT:	ALS recommen	ded hold tim	e (see units).	•				

Notes*:

Contact:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1327776 were received on 05-JUL-13 13:45.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

(ALS)			PLE			NG	W	AT	ER	СН/	AIN	OF	FCUSTON	IV.
ALS Environmental ALS Waterloo, Ph: 519-886-60	0 Northland Rd. Unit 1, Waterlo	Reg 170	/03	<u> </u>	∋g31i	3/319	г 5д }			ARE	SUB,	EC.	T TO REGULA	TION:
WORKS / CLIENT NAME	TWOPKO / 19-886-9047 Toll-Fre	e 1-800-668-9878		Pleas	e place	regula	ated ar	nd non	-regula	ted san	arnin	<u>g No</u>	otice Posted	Not Regulated
SAGE CAMPGROUND WELL SUPPLY	BONALD A		T	======				_	•	00 001	innes it	SEP,	ARATE SUBMISSION	No Contraction
WORKS / CLIEN	WORKS / CHENE	GE	<u> </u>	Please in	diante	AN	ALYSE	S REQ	UESTED				IFOR LAGUES	6131
1912 WHISTLE BARE RD, CAMBRIDGE	(510) COD REAL	NE / FAX	Sample	The	luicate ti	est for e	ach sar	mple by	Checkn	ark in th	e box b	low		NLY
VORKS NUMBER	HEALTH LINIT	-9850	Type*				D	D	Τ	TT	n) T	1	SUBMISSION NO	
WORKS CATEGORY	Region of Waterlas Lin			A A	- Second	°			ΙT	1	<u>}</u>	†	10/12/)7771
SDWS	HEALTH UNIT PHONE /		RS	17	= =	1	ne)	e	0	3			UDGGED BY	1110
	(519)-883-2008/(519)882	2226	AINE	Ŭ U U			Ē	, E	anic	§ ₹				Ľ
SAMPLE DECOM	Chlorine Sampling Date/	lime	INOS	E E	Ē	rite	Ses	Ses	org	B H		ء ا	DATE/TIME	
(This description will a	Residual Date	Regulated Sample	Ъ.	ifor ifor	for	Ĭ	×	XE	<u> </u>	5 IR		for	a 5171:	2 14.16
(the description will appear on the report)	(mg/L) (yy/mm/dd)	Time Type	BE	ິຍ ເອີ	0	te/	Ĕ	Ë	d 23	Ē	8	5	B TEMPERATURE AT	RECEIPT [C]
SITE 80		(R/T/D)		히겁	ğ	ii.	₹	ead	the che	₿	iori	jai (
<u>A</u>	13/07/05 12	5500 0	1		+-	<	╘┼	310	ŭ ŭ	8	Ē	Ĕ	Pre	
PUMPHOUSE	12/alist			<u> </u>								T		LABID
577 80	12/01/05 1:,	Iopm R	/	X				-+-		+-+				
MIE OU	13/07/05 12:	SE D			┼╌┼		-+-		_				0	
	-10 1/03 12	- and								∇		-+-	- X	
PAYMENT OPTIONS						-+-				$ \lambda $		\bot		
Apply against muse			l											
Apply to this O-	yment									<u> </u>	l			
Please mail	e enter Card Info below)												an i i a t an i at i at i an an	1
r lease make prepaymen	t of \$ by the f	Ollowing man-								8 88			11	
Mastercard	P Visa	enowing means:								L	1327	776.		ſ
Credit Card # 4520 8	and the	🗋 Cheque encl	osed							_				
	00 1429 6444	Expine 02/	1.L											
ED BY (print):	ample Type Legend : P		7											
TERISA SALE	DATE RECEIVED AT LAB	Naw Water T - Tre	ated Sc	ource	D - Di	stribu	tion S	Samo						
ITED TO THE PACE			1	Other Co	mments/	Cautions	(Please	e identify	y known o	suspec	ted haze	(de)		
(GIGNATURE)	RECEIVED AT LAB BY			TSAG	722 F							33)		
why	MA CITI	.7			-									
0	-100 Shiry	- LOIS 13	451	ronald a										
				. onalu.S	aye@s	ympati	ico.ca							

LVM INC. ATTN: CHRIS HELMER 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Date Received: 11-JUL-14 Report Date: 16-JUL-14 15:15 (MT) Version: FINAL

Client Phone: 519-741-1313

Certificate of Analysis

Lab Work Order #: L1485174

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 213152 P-0000145-0-00-401-05 14-399329

Nary Smith

Nancy Smith Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ANALYTICAL GUIDELINE REPORT

L1485174 CONTD

Page 2 of 6 16-JUL-14 15:15 (MT)

P-0000145-0-00-401-05 Sample Details

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline L	imits
1485174-1 SP1 (MP2-12)								
Sampled By: S METEER on 11-11.11 -14 @ 10:	3(
Matrix: WATER						#1		
Physical lests								
Color, Apparent	8.8		1.0	C.U.	11-JUL-14			
	013		3.0	umnos/cm	14-JUL-14			
	2/3		0.10	nig/L	16-JUL-14	0 5 0 5		
pn Total Dissolved Solida	0.13		20		14-JUL-14	0.5-8.5		
Turbidity	2 10		20	NTU	15-JUL-14			
Anions and Nutrients	2.10		0.10		11-002-14			
Alkalinity Total (as CaCO3)	215		10	ma/l	11-11-14			
Ammonia Total (as N)	<0.050		0.050	mg/L	15- II II -14			
Chloride	41.1		2.0	mg/L	15-JUI -14			
Fluoride	<0.10		0.10	mg/L	15-JUL-14			
Nitrate-N	4.53		0.10	mg/L	15-JUL-14			
Nitrite-N	<0.10		0.10	mg/L	15-JUL-14			
Total Kjeldahl Nitrogen	0.21		0.15	mg/L	14-JUL-14			
Phosphate-P (ortho)	<0.0030		0.0030	mg/L	14-JUL-14			
Total Phosphorus	0.0116		0.0030	mg/L	14-JUL-14			
Sulphate	25.8		2.0	mg/L	15-JUL-14			
Bacteriological Tests								
E. Coli	300	DLM	10	CFU/100m	12-JUL-14	*100		
Total Coliforms	800	DLM	100	L CFU/100m	12-JUL-14			
				L				
I otal Metals								
Aluminum (AI)-Total	0.027		0.010	mg/L	15-JUL-14	*0.015		
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	15-JUL-14	0.02		
Arsenic (As)-Total	<0.0010		0.0010	mg/L	15-JUL-14	0.005		
Barium (Ba)-Total	0.061		0.010	mg/L	15-JUL-14			
Beryllium (Be)- I otal	<0.0010		0.0010	mg/L	15-JUL-14	0.011		
Bismuth (Bi)-Total	<0.0010		0.0010	mg/L	15-JUL-14			
Boron (B)-1 otal	<0.050		0.050	mg/L	15-JUL-14	0.2		
Cadmium (Cd)-Total	<0.000090		0.000090	mg/L	15-JUL-14	0.0001		
Calcium (Ca)- I otal	67.4		0.50	mg/L	15-JUL-14			
Cobalt (Co) Total	<0.00050		0.00050	mg/L	15-JUL-14	0.0000		
	<0.00050		0.00030	mg/L	15-JUL-14	0.0009		
Copper (Cu)-Total	<0.0010		0.0010	mg/L	15-JUL-14	0.001		
Lood (Pb) Total	<0.000		0.000	mg/L	15-301-14	0.3		
Leau (FD)-Total	<0.0010		0.0010	mg/L	15-JUL-14	0.001		
Magnesium (Mg)-Total	25.5		0.50	mg/L	15-JUL-14			
Molybdenum (Mo)-Total	<0.0094		0.0010	ma/l	15-101-14	0.04		
Nickel (Ni)-Total	<0.0010		0.0020	ma/l	15-111-14	0.04		
Potassium (K)-Total	1 1		10	mg/L	15-11 1-14	0.020		
Selenium (Se)-Total	<0.00040		0.00040	ma/l	15-JUI -14	0.1		
Silicon (Si)-Total	4.5		1.0	ma/l	15-111-14	0.1		
Silver (Ag)-Total	<0.00010		0.00010	ma/L	15-JUL-14	0.0001		
Sodium (Na)-Total	19.9		0.50	ma/L	15-JUL-14	0.0001		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Surface Water PWQO

ANALYTICAL GUIDELINE REPORT

L1485174 CONTD

Page 3 of 6 16-JUL-14 15:15 (MT)

P-0000145-0-00-401-05 Sample Details

Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline	e Limits	
L1485174-1 SP1 (MP2-12)									
Sampled By: S METEER on 11-100 -14 @ 10	3(
Matrix: WATER						#1			
Total Metals									
Strontium (Sr)-Total	0.230		0.0010	mg/L	15-JUL-14				
Thallium (TI)-Total	<0.00030		0.00030	mg/L	15-JUL-14	0.0003			
Tin (Sn)-Total	<0.0010		0.0010	mg/L	15-JUL-14				
Titanium (Ti)-Total	<0.0020		0.0020	mg/L	15-JUL-14				
lungsten (W)-lotal	<0.010		0.010	mg/L	15-JUL-14	0.03			
Uranium (U)-Total	<0.0050		0.0050	mg/L	15-JUL-14	0.005			
Vanadium (V)-Total	<0.0010		0.0010	mg/L	15-JUL-14	0.006			
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	15-JUL-14	0.02			
Zirconium (Zr)-Total	<0.0040		0.0040	mg/L	15-JUL-14	0.004			
Aggregate Organics									
BOD Carbonaceous	<2.0		2.0	mg/L	16-JUL-14				
L1485174-2 SP2									
Sampled By: S. METEER on 11-JUL-14 @ 10	4(
Matrix: WATER						#1			
Physical Tasta									
	10.0		10	0.11					
Color, Apparent	10.0		1.0	U.U.	11-JUL-14				
	408		3.0	unnos/cm	14-JUL-14				
nH	8.55		0.10	nH unite	10-JUL-14	*6 5 9 5			
Total Dissolved Solids	241		20	ma/l	15-111-14	0.5-0.5			
Turbidity	1 32		0.10	NTU	13-30L-14				
Anions and Nutrients	1.02		0.10						
Alkalinity Total (as CaCO3)	153		10	ma/l	11 -14				
Ammonia, Total (as N)	<0.050		0.050	ma/l	15-JUI -14				
Chloride	35.7		2.0	ma/L	15-JUL-14				
Fluoride	<0.10		0.10	mg/L	15-JUL-14				
Nitrate-N	1.30		0.10	mg/L	15-JUL-14				
Nitrite-N	<0.10		0.10	mg/L	15-JUL-14				
Total Kjeldahl Nitrogen	0.68		0.15	mg/L	14-JUL-14				
Phosphate-P (ortho)	<0.0030		0.0030	mg/L	14-JUL-14				
Total Phosphorus	0.0103		0.0030	mg/L	14-JUL-14				
Sulphate	23.2		2.0	mg/L	15-JUL-14				
Bacteriological Tests									
E. Coli	150	DLM	10	CFU/100m	12-JUL-14	*100			
Total Coliforms	600	DLM	100	L CFU/100m L	12-JUL-14				
Total Metals									
Aluminum (Al)-Total	<0.010		0.010	mg/L	15-JUL-14	0.015			
Antimony (Sb)-Total	<0.0050		0.0050	mg/L	15-JUL-14	0.02			
Arsenic (As)-Total	<0.0010		0.0010	mg/L	15-JUL-14	0.005			
Barium (Ba)-Total	0.030		0.010	ma/L	15-JUL-14				
Beryllium (Be)-Total	<0.0010		0.0010	mg/L	15-JUL-14	0.011			
Bismuth (Bi)-Total	<0.0010		0.0010	ma/L	15-JUL-14				
Boron (B)-Total	<0.050		0.050	mg/L	15-JUL-14	0.2			
				5		- ·-			

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Surface Water PWQO

P-0000145-0-00-401-05

ANALYTICAL GUIDELINE REPORT

L1485174 CONTD.... Page 4 of 6

16-JUL-14 15:15 (MT)

Sample Details Analyte Result Qualifier D.L. Units Grouping Analyzed **Guideline Limits** L1485174-2 SP2 Sampled By: S. METEER on 11-JUL-14 @ 10:4(#1 Matrix: WATER **Total Metals** Cadmium (Cd)-Total < 0.000090 0.000090 15-JUL-14 mg/L 0.0001 Calcium (Ca)-Total 35.1 0.50 mg/L 15-JUL-14 Chromium (Cr)-Total < 0.00050 0.00050 mg/L 15-JUL-14 Cobalt (Co)-Total < 0.00050 0.00050 mg/L 15-JUL-14 0.0009 Copper (Cu)-Total < 0.0010 0.0010 mg/L 15-JUL-14 0.001 Iron (Fe)-Total < 0.050 0.050 mg/L 15-JUL-14 0.3 Lead (Pb)-Total < 0.0010 0.0010 mg/L 15-JUL-14 0.001 mg/L 15-JUL-14 Magnesium (Mg)-Total 24.6 0.50 0.0010 mg/L 15-JUL-14 Manganese (Mn)-Total 0.0113 Molybdenum (Mo)-Total < 0.0010 0.0010 mg/L 15-JUL-14 0.04 Nickel (Ni)-Total <0.0020 0.0020 mg/L 15-JUL-14 0.025 Potassium (K)-Total 1.1 15-JUL-14 1.0 mg/L Selenium (Se)-Total < 0.00040 0.00040 mg/L 15-JUL-14 0.1 Silicon (Si)-Total 4.3 1.0 mg/L 15-JUL-14 Silver (Ag)-Total < 0.00010 0.00010 mg/L 15-JUL-14 0.0001 Sodium (Na)-Total mg/L 15-JUL-14 16.4 0.50 Strontium (Sr)-Total 0.151 0.0010 mg/L 15-JUL-14 Thallium (TI)-Total < 0.00030 0.00030 mg/L 15-JUL-14 0.0003 Tin (Sn)-Total < 0.0010 0.0010 15-JUL-14 mg/L 15-JUL-14 Titanium (Ti)-Total < 0.0020 0.0020 mg/L Tungsten (W)-Total <0.010 0.010 mg/L 15-JUL-14 0.03 < 0.0050 0.0050 mg/L 15-JUL-14 Uranium (U)-Total 0.005 Vanadium (V)-Total < 0.0010 0.0010 mg/L 15-JUL-14 0.006 < 0.0030 0.0030 15-JUL-14 Zinc (Zn)-Total mg/L 0.02 <0.0040 0.0040 15-JUL-14 Zirconium (Zr)-Total mg/L 0.004 **Aggregate Organics BOD** Carbonaceous <2.0 2.0 mg/L 16-JUL-14

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Surface Water PWQO

Sample Parameter Qualifier key listed:

Qualifier Description	on			
DLM Detection	Limit Adjuste	d due to sample matrix effects.		
Methods Listed (if applie	cable):			
ALS Test Code	Matrix	Test Description	Method Reference***	
ALK-WT	Water	Alkalinity, Total (as CaCO3)	EPA 310.2	
ANIONS5-WT	Water	CL,F,NO2,NO3,SO4	EPA 300.0 (IC)	
BOD-C-WT	Water	BOD Carbonaceous	APHA 5210 B (CBOD)	
Sample is incubated at 2 COLOUR-WT	20°C– 1 C for Water	5 days using a nitrification inhibitor Colour	АРНА 2120	
Apparent colour is detern EC-MF-WT	mined by anal Water	ysis of the decanted sample using E. coli	the platinum-cobalt colourimetric metho SM 9222D	d.
A 100mL volume of sam Method ID: WT-TM-1200	ple is filtered t	hrough a membrane, the membra	ne is placed on mFC-BCIG agar and inc	ubated at @44.5–0.2°C for 24–2h.
EC-WT	Water	Conductivity	APHA 2510 B	
Water samples can be n ETL-HARDNESS-CALC- WT	neasured dired Water	ctly by immersing the conductivity of Hardness (as CaCO3)	cell into the sample. APHA 2340 B	
MET-T-MS-WT	Water	Total Metals in Water by ICPMS	S EPA 200.8	
This analysis involves pr mass spectrometry (EP/	eliminary sam Method 6020	ple treatment by hotblock acid dige DA).	estion (APHA 3030E). Instrumental ana	alysis is by inductively coupled plasma -
NH3-WT	Water	Ammonia, Total as N	EPA 350.1	
Sample is measured col colorimetrically.	orimetrically. \	When sample is turbid a distillation	step is required, sample is distilled into	a solution of boric acid and measured
P-ORTHO-LOW-WT	Water	Phosphorus-P (ortho)	APHA 4500-P B E	
P-TOTAL-LOW-WT	Water	Phosphorus, Total, Low Level	APHA 4500-P B E	
This analysis is carried b PH-WT	oy out an discr Water	ete colorimetric auto-analyzer usin pH	g procedures adapted from APHA Meth APHA 4500 H-Electrode	od 4500-P "Phosphorus".
Water samples are analy	yzed directly b	y a calibrated pH meter.		
Analysis conducted in ad Protection Act (July 1, 20	ccordance with	the Protocol for Analytical Method	Is Used in the Assessment of Properties	s under Part XV.1 of the Environmental
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C	
A well-mixed sample is f 180–10°C for 1hr.	iltered though	glass fibres filter. A known volume	e of the filtrate is evaporated and dried a	at 105–5°C overnight and then
TC-MF-WT	Water	Total Coliforms	SM 9222B	
A 100mL volume of sam Method ID: WT-TM-1200	ple is filtered t	hrough a membrane, the membran	ne is placed on mENDO LES agar and i	ncubated at 35–0.5°C for 24–2h.
TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-N	
Sample is digested to co by the instrument is prop TURBIDITY-WT	onvert the TKN portional to the Water	I to ammonium sulphate. The amm concentration of ammonium sulph Turbidity	nonia ions are heated to produce a colou nate in the sample and is reported as TK APHA 2130 B	ur complex. The absorbance measured (N.
Sample result is based of by a standard reference	on a compariso suspension ur	on of the intensity of the light scattened on the same conditions. Sample	ered by the sample under defined condit readings are obtained from a Nephelom	tions with the intensity of light scattered neter.
*** ALS test methods may	incorporate m	odifications from specified reference	e methods to improve performance.	
Chain of Custody numb	ers:			
14-399329				
The last two letters of th	e above test c	code(s) indicate the laboratory that	performed analytical analysis for that te	est. Refer to the list below:
Laboratory Definition C	code Labo	ratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS E	ENVIRONMENTAL - WATERLOO, ARIO, CANADA		

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Client: LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: CHRIS HELMER Test Matrix Reference Result Qualifier Units RPD Lir ALK-WT Water Batch R2884938 WT-ALK-CRM Matrix Reference Result Qualifier Units RPD Lir ALK-WT Water Units RPD Lir No.3 % 80 WG1909534-3 CRM WT-ALK-CRM No.3 % 80 WG1909534-2 CVS 108.3 % 85 WG1909534-4 DUP L1484984-1 55	
Contact:CHRIS HELMERTestMatrixReferenceResultQualifierUnitsRPDLirALK-WTWaterBatchR2884938WT-ALK-CRMWG1909534-3CRMWT-ALK-CRMAlkalinity, Total (as CaCO3)108.3%80WG1909534-2CVSAlkalinity, Total (as CaCO3)112.8%85WG1909534-4DUPL1484984-185	
TestMatrixReferenceResultQualifierUnitsRPDLirALK-WTWaterBatchR2884938WG1909534-3CRMWT-ALK-CRMAlkalinity, Total (as CaCO3)108.3%80WG1909534-2CVSAlkalinity, Total (as CaCO3)112.8%85WG1909534-4DUPL1484984-144	
ALK-WT Water Batch R2884938 WG1909534-3 CRM WT-ALK-CRM Alkalinity, Total (as CaCO3) 108.3 % 80 WG1909534-2 CVS 112.8 % 85 WG1909534-4 DUP L1484984-1 % 85	nit Analyzed
Batch R2884938 WG1909534-3 CRM WT-ALK-CRM Alkalinity, Total (as CaCO3) 108.3 % 80 WG1909534-2 CVS K	
WG1909534-3 CRM WT-ALK-CRM Alkalinity, Total (as CaCO3) 108.3 % 80 WG1909534-2 CVS Kalkalinity, Total (as CaCO3) 112.8 % 85 WG1909534-4 DUP L1484984-1 5 5 5	
WG1909534-2 CVS Alkalinity, Total (as CaCO3) 112.8 % 85 WG1909534-4 DUP L1484984-1 % 85)-120 11-JUL-14
WG1909534-4 DUP L1484984-1	j-115 11-JUL-14
Alkalinity, Total (as CaCO3) 37 35 mg/L 5.9 20) 11-JUL-14
WG1909534-5 DUP L1485465-6 Alkalinity, Total (as CaCO3) 57 56 mg/L 1.6 20) 11-JUL-14
WG1909534-1 MB Alkalinity, Total (as CaCO3) <10) 11-JUL-14
ANIONS5-WT Water	
Batch R2887821	
WG1911241-2 LCS	
Eluoride 102.5 %	-115 15-JUL-14
Nitrite-N 102.5 % 95	-115 15-JUL-14
Nitrate-N 100.5 % 85	-115 15-JUL-14
Sulphate 102.1 % 85	5-115 15-JUI -14
WG1911241-3 LCSD WG1911241-2	
Chloride 102.1 102.7 % 0.5 25	5 15-JUL-14
Fluoride 102.5 102.1 % 0.4 25	5 15-JUL-14
Nitrite-N 102.5 103.6 % 1.0 25	5 15-JUL-14
Nitrate-N 100.5 100.7 % 0.2 25	5 15-JUL-14
Sulphate 102.1 102.5 % 0.4 25	5 15-JUL-14
WG1911241-1 MB Chloride <2.0	15-JUL-14
Fluoride <0.10 mg/L 0.7	1 15-JUL-14
Nitrite-N <0.10 mg/L 0.7	1 15-JUL-14
Nitrate-N <0.10 mg/L 0.1	1 15-JUL-14
Sulphate <2.0 mg/L 2	15-JUL-14
BOD-C-WT Water	
Batch R2887597	
WG1908934-2 DUP L1484901-2 BOD Carbonaccours 1740 1600 mail 17 22	
Wedperson A DUD Lagence 4	7 16-JUL-14
BOD Carbonaceous 172 156 mg/L 9.8 20) 16-JUL-14

Report Date: 16-JUL-14

Page 2 of 13

Workorder: L1485174

Client: L 3	.VM INC. 53 BRID	GE ST. E.							
Contact: C	CITCHEN	ER ON N2K 2 ELMER	Y5						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BOD-C-WT		Water							
Batch R2	887597								
WG1908934-5	DUP		L1485150-1	4000					
BOD Carbonac	eous		1930	1920		mg/L	0.4	20	16-JUL-14
WG1908934-3 BOD Carbonac	LCS eous			99.5		%		85-115	16-JUL-14
WG1908934-1 BOD Carbonac	MB eous			<2.0		mg/L		2	16-JUL-14
COLOUR-WT		Water							
Batch R2	884339								
WG1909464-3	CRM		WT-COLOUR-	CRM					
Color, Apparent	t			98.0		%		80-120	11-JUL-14
WG1909464-2 Color, Apparent	CVS t			96.9		%		85-115	11-JUL-14
WG1909464-4 Color, Apparent	DUP		L1485465-6 15.5	15.9		C.U.	2.4	20	11-JUL-14
WG1909464-1 Color, Apparent	MB t			<1.0		C.U.		1	11-JUL-14
EC-MF-WT		Water							
Batch R2	884952								
WG1909341-3	DUP		L1484905-1						
E. Coli			0	0		CFU/100mL	0.0	50	12-JUL-14
WG1909341-6	DUP		L1485465-6						
E. Coli			5	4		CFU/100mL	22	50	12-JUL-14
WG1909341-7	DUP		L1485465-4	0			0.0	50	40 11 14
			0	0		CF0/100IIIL	0.0	50	12-JUL-14
E. Coli	MB			0		CFU/100mL		1	12-1111-14
WG1909341-2	MR			-					
E. Coli				0		CFU/100mL		1	12-JUL-14
WG1909341-4	МВ								
E. Coli				0		CFU/100mL		1	12-JUL-14
WG1909341-5	MB								
E. Coli				0		CFU/100mL		1	12-JUL-14
EC-WT		Water							
Batch R2	885889								
WG1910396-3	CVS								
Conductivity				100.9		%		90-110	14-JUL-14
WG1910396-5	DUP		WG1910396-4						

		Workorder:	L148517	4	Report Date: 16-	JUL-14		Page 3 of	13
Client: LVM 353 E KITC	INC. BRIDGE ST. E. HENER ON N2K 2Y	′5							
Test	IS HELMER Matrix	Reference	Result	Qualifier	Units	RPD	l imit	Analyzed	
	Watar		liooun		01110			, maryzou	
EU-WI Batah B2885	water								
WG1910396-5 DI Conductivity	JP	WG1910396-4 1190	1190		umhos/cm	0.2	10	14-JUL-14	
WG1910396-6 DU Conductivity	JP	L1485544-27 1560	1550		umhos/cm	0.3	10	14-JUL-14	
WG1910396-1 MI Conductivity	В		<3.0		umhos/cm		3	14-JUL-14	
MET-T-MS-WT	Water								
Batch R2885	820								
WG1910306-1 C	/S		101.0		0/				
Aluminum (Al)-Tota	1		101.0		%		80-120	14-JUL-14	
Anumony (Sb)-Tola	I		100.8		% 0/		80-120	14-JUL-14	
Arsenic (As)-Total			99.0 06.5		70 9/		80-120	14-JUL-14	
Bendlium (Be)-Tota	1		90.5		78 0/		80-120	14-JUL-14	
Bismuth (Bi)-Total	I		90.9 90.7		78 0/		80.120	14-JUL-14	
Boron (B)-Total			92.5		%		80 120	14-JOL-14	
Cadmium (Cd)-Tota	al		100.6		%		80-120	14-302-14	
Calcium (Ca)-Total			99.2		%		80-120	14-111-14	
Chromium (Cr)-Tota	al		99.6		%		80-120	14-1111-14	
Cobalt (Co)-Total			100.3		%		80-120	14 00E 14	
Copper (Cu)-Total			101.7		%		80-120	14-JUI -14	
Iron (Fe)-Total			102.2		%		80-120	14-JUI -14	
Lead (Pb)-Total			102.1		%		80-120	14-JUL-14	
Magnesium (Mg)-To	otal		101.5		%		80-120	14-JUL-14	
Manganese (Mn)-To	otal		100.0		%		80-120	14-JUL-14	
Molybdenum (Mo)-7	Fotal		92.6		%		80-120	14-JUL-14	
Nickel (Ni)-Total			100.1		%		80-120	14-JUL-14	
Potassium (K)-Tota	I		97.6		%		80-120	14-JUL-14	
Selenium (Se)-Tota	I		99.1		%		80-120	14-JUL-14	
Silicon (Si)-Total			96.7		%		80-120	14-JUL-14	
Silver (Ag)-Total			102.3		%		80-120	14-JUL-14	
Sodium (Na)-Total			99.1		%		80-120	14-JUL-14	
Strontium (Sr)-Tota	I		96.3		%		80-120	14-JUL-14	
Thallium (TI)-Total			100.8		%		80-120	14-JUL-14	
Tin (Sn)-Total			99.3		%		80-120	14IUII -14	

Workorder:L1485174Report Date:16-JUL-14Page4 of13

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2885820								
WG1910306-1 CVS			00.0		0/			
			99.8		%		80-120	14-JUL-14
			96.6		%		80-120	14-JUL-14
			100.4		%		80-120	14-JUL-14
vanadium (v)-i otai			100.5		%		80-120	14-JUL-14
\angle inc (\angle n)- i otal			94.0		%		80-120	14-JUL-14
Zirconium (Zr)-Total			94.4		%		80-120	14-JUL-14
WG1910306-3 CVS Aluminum (Al)-Total			98.2		%		80-120	15-JUL-14
Antimony (Sb)-Total			107.0		%		80-120	15-JUL-14
Arsenic (As)-Total			96.1		%		80-120	15-JUL-14
Barium (Ba)-Total			94.4		%		80-120	15-JUL-14
Beryllium (Be)-Total			97.4		%		80-120	15-JUL-14
Bismuth (Bi)-Total			102.4		%		80-120	15-JUL-14
Boron (B)-Total			99.8		%		80-120	15-JUL-14
Cadmium (Cd)-Total			98.0		%		80-120	15-JUL-14
Calcium (Ca)-Total			100.5		%		80-120	15-JUL-14
Chromium (Cr)-Total			97.9		%		80-120	15-JUL-14
Cobalt (Co)-Total			97.6		%		80-120	15-JUL-14
Copper (Cu)-Total			97.6		%		80-120	15-JUL-14
Iron (Fe)-Total			101.1		%		80-120	15-JUL-14
Lead (Pb)-Total			102.0		%		80-120	15-JUL-14
Magnesium (Mg)-Total			107.7		%		80-120	15-JUL-14
Manganese (Mn)-Total			99.7		%		80-120	15-JUL-14
Molybdenum (Mo)-Tota	I		99.2		%		80-120	15-JUL-14
Nickel (Ni)-Total			98.7		%		80-120	15-JUL-14
Potassium (K)-Total			105.9		%		80-120	15-JUL-14
Selenium (Se)-Total			99.3		%		80-120	15-JUL-14
Silicon (Si)-Total			95.1		%		80-120	15-JUL-14
Silver (Ag)-Total			110.7		%		80-120	15-JUL-14
Sodium (Na)-Total			101.3		%		80-120	15-JUL-14
Strontium (Sr)-Total			97.6		%		80-120	15-JUL-14
Thallium (TI)-Total			104.4		%		80-120	15-JUL-14
Tin (Sn)-Total			97.5		%		80-120	15-JUL-14
Titanium (Ti)-Total			96.9		%		80-120	15-JUL-14

Workorder: L1485174 Report Date: 16-JUL-14 F

Page 5 of 13

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2885820 WG1910306-3 CVS			100.2		9/		80.400	
I tranium (II)-Total			100.5		78 9/		80-120	15-JUL-14
			08.4		70 9/		80-120	15-JUL-14
$Z_{inc}(Z_n)$ Total			90.4 02.5		70 97		80-120	15-JUL-14
Zinc (Zn)-Total			92.5		70 97		80-120	15-JUL-14
WG1910306-4 CVS			97.1		78		80-120	15-JUL-14
Aluminum (Al)-Total			98.4		%		80-120	16-JUL-14
Antimony (Sb)-Total			99.9		%		80-120	16-JUL-14
Arsenic (As)-Total			95.1		%		80-120	16-JUL-14
Barium (Ba)-Total			89.3		%		80-120	16-JUL-14
Beryllium (Be)-Total			95.2		%		80-120	16-JUL-14
Bismuth (Bi)-Total			98.4		%		80-120	16-JUL-14
Boron (B)-Total			97.6		%		80-120	16-JUL-14
Cadmium (Cd)-Total			95.3		%		80-120	16-JUL-14
Calcium (Ca)-Total			102.2		%		80-120	16-JUL-14
Chromium (Cr)-Total			95.9		%		80-120	16-JUL-14
Cobalt (Co)-Total			91.7		%		80-120	16-JUL-14
Copper (Cu)-Total			96.2		%		80-120	16-JUL-14
Iron (Fe)-Total			100.2		%		80-120	16-JUL-14
Lead (Pb)-Total			101.4		%		80-120	16-JUL-14
Magnesium (Mg)-Total			101.4		%		80-120	16-JUL-14
Manganese (Mn)-Total			94.1		%		80-120	16-JUL-14
Molybdenum (Mo)-Total			91.4		%		80-120	16-JUL-14
Nickel (Ni)-Total			94.7		%		80-120	16-JUL-14
Potassium (K)-Total			104.7		%		80-120	16-JUL-14
Selenium (Se)-Total			97.5		%		80-120	16-JUL-14
Silicon (Si)-Total			92.7		%		80-120	16-JUL-14
Silver (Ag)-Total			99.8		%		80-120	16-JUL-14
Sodium (Na)-Total			106.0		%		80-120	16-JUL-14
Strontium (Sr)-Total			102.1		%		80-120	16-JUL-14
Thallium (TI)-Total			99.9		%		80-120	16-JUL-14
Tin (Sn)-Total			94.7		%		80-120	16-JUL-14
Titanium (Ti)-Total			98.9		%		80-120	16-JUL-14
Tungsten (W)-Total			98.8		%		80-120	16-JUL-14

Workorder: L1485174 Rep

Report Date: 16-JUL-14

Page 6 of 13

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2885820 WG1910306-4 CVS								
Uranium (U)-Total			100.9		%		80-120	16-JUL-14
Vanadium (V)-Total			101.8		%		80-120	16-JUL-14
Zinc (Zn)-Total			86.2		%		80-120	16-JUL-14
Zirconium (Zr)-Total			99.2		%		80-120	16-JUL-14
WG1910103-4 DUP Aluminum (Al)-Total		WG1910103-3 <0.10	<0.10	RPD-NA	mg/L	N/A	20	14-JUL-14
Antimony (Sb)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-JUL-14
Arsenic (As)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-JUL-14
Barium (Ba)-Total		0.104	0.104		mg/L	0.2	20	14-JUL-14
Beryllium (Be)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-JUL-14
Bismuth (Bi)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-JUL-14
Boron (B)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	14-JUL-14
Cadmium (Cd)-Total		<0.00090	<0.00090	RPD-NA	mg/L	N/A	20	14-JUL-14
Calcium (Ca)-Total		130	128		mg/L	0.9	20	14-JUL-14
Chromium (Cr)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-JUL-14
Cobalt (Co)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-JUL-14
Copper (Cu)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-JUL-14
Iron (Fe)-Total		<0.50	<0.50	RPD-NA	mg/L	N/A	20	14-JUL-14
Lead (Pb)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-JUL-14
Magnesium (Mg)-Total		34.6	34.5		mg/L	0.2	20	14-JUL-14
Manganese (Mn)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-JUL-14
Molybdenum (Mo)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-JUL-14
Nickel (Ni)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-JUL-14
Potassium (K)-Total		<10	<10	RPD-NA	mg/L	N/A	20	14-JUL-14
Selenium (Se)-Total		<0.0040	<0.0040	RPD-NA	mg/L	N/A	20	14-JUL-14
Silicon (Si)-Total		<10	<10	RPD-NA	mg/L	N/A	20	14-JUL-14
Silver (Ag)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	14-JUL-14
Sodium (Na)-Total		140	138		mg/L	1.3	20	14-JUL-14
Strontium (Sr)-Total		0.873	0.956		mg/L	9.1	20	14-JUL-14
Thallium (TI)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	14-JUL-14
Tin (Sn)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	14-JUL-14
Titanium (Ti)-Total		<0.020	<0.020	RPD-NA	mg/L	N/A	20	14-JUL-14
Tungsten (W)-Total		<0.10	<0.10	RPD-NA	mg/L	N/A	20	14-JUL-14

Test

Batch

Tin (Sn)-Total

Titanium (Ti)-Total

Tungsten (W)-Total

Uranium (U)-Total

Quality Control Report

Workorder: L1485174 Report Date: 16-JUL-14 Page 7 of 13 LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: CHRIS HELMER Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-MS-WT Water R2885820 WG1910103-4 DUP WG1910103-3 Uranium (U)-Total < 0.010 < 0.010 **RPD-NA** mg/L N/A 20 14-JUL-14 Vanadium (V)-Total < 0.0050 < 0.0050 **RPD-NA** mg/L N/A 20 14-JUL-14 Zinc (Zn)-Total 0.101 0.102 mg/L 1.0 20 14-JUL-14 < 0.040 < 0.040 Zirconium (Zr)-Total **RPD-NA** mg/L N/A 20 14-JUL-14 WG1910103-2 LCS 97.7 % Aluminum (AI)-Total 80-120 14-JUL-14 Antimony (Sb)-Total 93.5 % 80-120 14-JUL-14 Arsenic (As)-Total % 96.6 80-120 14-JUL-14 Barium (Ba)-Total 96.0 % 80-120 14-JUL-14 Beryllium (Be)-Total 87.7 % 80-120 14-JUL-14 Bismuth (Bi)-Total 94.7 % 80-120 14-JUL-14 Boron (B)-Total 88.8 % 80-120 14-JUL-14 95.6 % Cadmium (Cd)-Total 80-120 14-JUL-14 Calcium (Ca)-Total % 102.9 80-120 14-JUL-14 Chromium (Cr)-Total 95.7 % 80-120 14-JUL-14 Cobalt (Co)-Total 96.3 % 80-120 14-JUL-14 Copper (Cu)-Total 96.2 % 14-JUL-14 80-120 Iron (Fe)-Total 98.8 % 80-120 14-JUL-14 Lead (Pb)-Total 93.5 % 80-120 14-JUL-14 Magnesium (Mg)-Total 97.8 % 80-120 14-JUL-14 Manganese (Mn)-Total 96.6 % 80-120 14-JUL-14 Molybdenum (Mo)-Total 93.7 % 80-120 14-JUL-14 Nickel (Ni)-Total 96.2 % 80-120 14-JUL-14 Potassium (K)-Total 99.9 % 80-120 14-JUL-14 Selenium (Se)-Total 95.3 % 80-120 14-JUL-14 Silicon (Si)-Total 94.8 % 80-120 14-JUL-14 Silver (Ag)-Total 99.3 % 80-120 14-JUL-14 Sodium (Na)-Total 99.1 % 80-120 14-JUL-14 Strontium (Sr)-Total 94.6 % 80-120 14-JUL-14 Thallium (TI)-Total 93.7 % 80-120 14-JUL-14

%

%

%

80-120

80-120

80-120

80-120

14-JUL-14

14-JUL-14

14-JUL-14

95.6

95.6

91.7

97.4

Workorder:L1485174Report Date:16-JUL-14Page8 of13

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WT	Water							
Batch R2885820								
WG1910103-2 LCS Uranium (U)-Total			97.4		%		80-120	14-JUL-14
Vanadium (V)-Total			97.1		%		80-120	14-JUL-14
Zinc (Zn)-Total			95.8		%		80-120	14-JUL-14
Zirconium (Zr)-Total			90.4		%		80-120	14-JUL-14
WG1910103-1 MB Aluminum (Al)-Total			<0.010		mg/L		0.01	14-JUL-14
Antimony (Sb)-Total			<0.00050		mg/L		0.0005	14-JUL-14
Arsenic (As)-Total			<0.0010		mg/L		0.001	14-JUL-14
Barium (Ba)-Total			<0.0020		mg/L		0.002	14-JUL-14
Beryllium (Be)-Total			<0.00050		mg/L		0.0005	14-JUL-14
Bismuth (Bi)-Total			<0.0010		mg/L		0.001	14-JUL-14
Boron (B)-Total			<0.010		mg/L		0.01	14-JUL-14
Cadmium (Cd)-Total			<0.00009	0	mg/L		0.00009	14-JUL-14
Calcium (Ca)-Total			<0.50		mg/L		0.5	14-JUL-14
Chromium (Cr)-Total			<0.00050		mg/L		0.0005	14-JUL-14
Cobalt (Co)-Total			<0.00050		mg/L		0.0005	14-JUL-14
Copper (Cu)-Total			<0.0010		mg/L		0.001	14-JUL-14
Iron (Fe)-Total			<0.050		mg/L		0.05	14-JUL-14
Lead (Pb)-Total			<0.00050		mg/L		0.0005	14-JUL-14
Magnesium (Mg)-Total			<0.50		mg/L		0.5	14-JUL-14
Manganese (Mn)-Total			<0.0010		mg/L		0.001	14-JUL-14
Molybdenum (Mo)-Total			<0.00050		mg/L		0.0005	14-JUL-14
Nickel (Ni)-Total			<0.0010		mg/L		0.001	14-JUL-14
Potassium (K)-Total			<1.0		mg/L		1	14-JUL-14
Selenium (Se)-Total			<0.00040		mg/L		0.0004	14-JUL-14
Silicon (Si)-Total			<1.0		mg/L		1	14-JUL-14
Silver (Ag)-Total			<0.00010		mg/L		0.0001	14-JUL-14
Sodium (Na)-Total			<0.50		mg/L		0.5	14-JUL-14
Strontium (Sr)-Total			<0.0010		mg/L		0.001	14-JUL-14
Thallium (TI)-Total			<0.00030		mg/L		0.0003	14-JUL-14
Tin (Sn)-Total			<0.0010		mg/L		0.001	14-JUL-14
Titanium (Ti)-Total			<0.0020		mg/L		0.002	14-JUL-14
Tungsten (W)-Total			<0.010		mg/L		0.01	14-JUL-14
Uranium (U)-Total			<0.0010		mg/L		0.001	14-JUL-14

Test

Quality Control Report

Workorder: L1485174 Report Date: 16-JUL-14 Page 9 of 13 LVM INC. Client: 353 BRIDGE ST. E. KITCHENER ON N2K 2Y5 Contact: CHRIS HELMER Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-MS-WT Water R2885820 Batch WG1910103-1 MB < 0.00050 Vanadium (V)-Total 0.0005 mg/L 14-JUL-14 Zinc (Zn)-Total < 0.0030 mg/L 0.003 14-JUL-14 < 0.0040 Zirconium (Zr)-Total mg/L 0.004 14-JUL-14 WG1910103-5 MS WG1910103-3 Aluminum (AI)-Total 108.6 % 70-130 14-JUL-14 Antimony (Sb)-Total 95.1 % 70-130 14-JUL-14 Arsenic (As)-Total 96.8 % 70-130 14-JUL-14 Barium (Ba)-Total N/A MS-B % 14-JUL-14 Beryllium (Be)-Total 91.7 % 70-130 14-JUL-14 Bismuth (Bi)-Total 94.7 % 70-130 14-JUL-14 Boron (B)-Total 107.1 % 70-130 14-JUL-14 Cadmium (Cd)-Total 92.0 % 14-JUL-14 70-130 Calcium (Ca)-Total N/A MS-B % 14-JUL-14 Chromium (Cr)-Total 91.5 % 70-130 14-JUL-14 Cobalt (Co)-Total 94.5 % 14-JUL-14 70-130 Copper (Cu)-Total 102.1 % 70-130 14-JUL-14 Iron (Fe)-Total 101.3 % 70-130 14-JUL-14 Lead (Pb)-Total 95.9 % 70-130 14-JUL-14 Magnesium (Mg)-Total MS-B % N/A 14-JUL-14 Manganese (Mn)-Total 100.7 % 70-130 14-JUL-14 Molybdenum (Mo)-Total 101.0 % 70-130 14-JUL-14 Nickel (Ni)-Total 98.5 % 70-130 14-JUL-14 Selenium (Se)-Total 92.9 % 70-130 14-JUL-14 Silver (Ag)-Total 98.3 % 70-130 14-JUL-14 Sodium (Na)-Total N/A MS-B % 14-JUL-14 Strontium (Sr)-Total N/A MS-B % 14-JUL-14 Thallium (TI)-Total 93.5 % 70-130 14-JUL-14 Tin (Sn)-Total 94.8 % 70-130 14-JUL-14 Titanium (Ti)-Total 96.7 % 70-130 14-JUL-14 Tungsten (W)-Total 93.5 % 70-130 14-JUL-14 Uranium (U)-Total % 95.9 70-130 14-JUL-14 Vanadium (V)-Total 94.7 % 70-130 14-JUL-14 Zinc (Zn)-Total N/A % MS-B 14-JUL-14 95.1 Zirconium (Zr)-Total % 70-130 14-JUL-14

Quality Control Report

		Workorder:	L148517	4 R	eport Date:	16-JUL-14		Page 10 of 13
Client:	LVM INC. 353 BRIDGE ST. E. KITCHENER ON N2K	2Y5						
Contact:	CHRIS HELMER							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-WT	Water							
Batch R WG1910980-2 Ammonia, Tota	2887188 CVS al (as N)		94.9		%		85-115	15-JUL-14
WG1910980-3 Ammonia, Tota	DUP al (as N)	L1484984-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	15-JUL-14
WG1910980-5 Ammonia, Tota	DUP al (as N)	L1485174-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	15-JUL-14
WG1910980-7 Ammonia, Tota	DUP al (as N)	L1485417-1 <0.050	<0.050	RPD-NA	mg/L	N/A	20	15-JUL-14
WG1910980-1 Ammonia, Tota	MB al (as N)		<0.050		mg/L		0.05	15-JUL-14
WG1910980-4 Ammonia, Tota	MS al (as N)	L1484984-1	95.1		%		75-125	15-JUL-14
WG1910980-6 Ammonia, Tota	MS al (as N)	L1485174-1	98.2		%		75-125	15-JUL-14
WG1910980-8 Ammonia, Tota	MS al (as N)	L1485417-1	94.2		%		75-125	15-JUL-14
P-ORTHO-LOW-W	/T Water							
Batch R WG1910246-3 Phosphate-P (2885328 DUP ortho)	L1484169-2 0.0699	0.0667		mg/L	4.7	20	14-JUL-14
WG1910246-5 Phosphate-P(DUP ortho)	L1484973-1 9.10	8.89		mg/L	2.3	20	14-JUL-14
WG1910246-7 Phosphate-P (DUP ortho)	L1485372-6 <0.0030	<0.0030	RPD-NA	mg/L	N/A	20	14-JUL-14
WG1910246-2 Phosphate-P(LCS ortho)		97.9		%		80-120	14-JUL-14
WG1910246-1 Phosphate-P(MB ortho)		<0.0030		mg/L		0.003	14-JUL-14
WG1910246-4 Phosphate-P(MS ortho)	L1484169-2	N/A	MS-B	%		-	14-JUL-14
WG1910246-6 Phosphate-P(MS ortho)	L1484973-1	N/A	MS-B	%		-	14-JUL-14
WG1910246-8 Phosphate-P (MS ortho)	L1485372-6	86.9		%		70-130	14-JUL-14
P-TOTAL-LOW-W	T Water							

Page 11 of 13

			Workorder: L1485174			Report Date: 16	Page 11 of 1		
Client: Contact:	LVM INC. 353 BRID KITCHEN CHRIS H	Ige St. E. Ier on N2K 2Y: Elmer	5						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
P-TOTAL-LOW	-wt	Water							
Batch WG1910142 Total Phosp	R2885306 -3 DUP ohorus		L1485465-4 0.161	0.156		mg/L	3.7	20	14-JUL-14
WG1910142 Total Phosp	2-5 DUP ohorus		L1485174-1 0.0116	0.0091	J	mg/L	0.0026	0.006	14-JUL-14
WG1910142 Total Phosp	-2 LCS bhorus			101.9		%		80-120	14-JUL-14
WG1910142 Total Phosp	horus			<0.0030		mg/L		0.003	14-JUL-14
Total Phosp	horus		L1400400-4	N/A	MS-B	%		-	14-JUL-14
WG1910142 Total Phosp	-6 MS ohorus		L1485174-1	101.2		%		70-130	14-JUL-14
PH-WT		Water							
Batch WG1910394 рН	R2885830 -3 DUP		WG1910394-2 8.06	8.04	J	pH units	0.02	0.2	14-JUL-14
WG1910394 рН	-4 DUP		L1485544-27 7.87	7.87	J	pH units	0.00	0.2	14-JUL-14
WG1910394 рН	-1 LCS			7.01		pH units		6.9-7.1	14-JUL-14
SOLIDS-TDS-V	VT	Water							
Batch WG1910382 Total Disso	R2886244 -3 DUP lved Solids		L1485174-1 339	338		mg/L	0.1	20	15-JUL-14
WG1910382 Total Disso	-2 LCS lved Solids			100.2		%		85-115	15-JUL-14
WG1910382 Total Disso	-1 MB lved Solids			<20		mg/L		20	15-JUL-14
TC-MF-WT		Water							
Batch WG1909336 Total Colifo	R2884958 -3 DUP rms		L1484905-1 0	0		CFU/100mL	0.0	50	12-JUL-14
WG1909336 Total Colifo	i-1 MB rms			0		CFU/100mL		1	12-JUL-14
WG1909336 Total Colifo	-2 MB rms			0		CFU/100mL		1	12-JUL-14
WG1909336	-4 MB								

Quality Control Report

		Workorder:	L148517	' 4	Report Date: 16-	JUL-14		Page 12 of 13	
Client: LV 35 KI Contact: Cl	/M INC. 53 BRIDGE ST. E. TCHENER ON N2K 2 HRIS HELMER	2Y5							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
TC-MF-WT	Water								
Batch R28 WG1909336-4 Total Coliforms	884958 MB		0		CEU/100ml		1	12-1111-14	
WG1909336-5 Total Coliforms	МВ		0		CFU/100mL		1	12-JUL-14	
TKN-WT	Water								
Batch R28 WG1910278-1 Total Kjeldahl Ni	885473 CVS trogen		108.9		%		75-125	14-JUL-14	
WG1910119-3 Total Kjeldahl Ni	DUP trogen	L1485035-1 130	122		mg/L	6.5	20	14-JUL-14	
WG1910119-4 Total Kjeldahl Ni	DUP trogen	L1484928-8 0.58	0.59		mg/L	1.6	20	14-JUL-14	
WG1910119-2 Total Kjeldahl Ni	LCS trogen		102.1		%		75-125	14-JUL-14	
WG1910119-1 Total Kjeldahl Ni	MB trogen		<0.15		mg/L		0.15	14-JUL-14	
TURBIDITY-WT	Water								
Batch R28	384223								
WG1909160-2 Turbidity	CVS		100.0		%		85-115	11-JUL-14	
WG1909160-4 Turbidity	DUP	L1484904-1 0.56	0.55		NTU	1.8	20	11-JUL-14	
WG1909160-1 Turbidity	МВ		<0.10		NTU		0.1	11-JUL-14	

Workorder: L1485174 Report Date: 16-JUL-14

Client:	LVM INC.						
	353 BRIDGE ST. E.						
	KITCHENER ON N2K 2Y5						
Contact:	CHRIS HELMER						

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects.
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical **Request Form**

COC Number: 14 - 399329
Page of
· · ·

NA-FM-0326e v08 Front/03 October 2013

Env	ironment	a
www.al	global.com	

Canada Toll Free: 1 800 668 9878

Report To		Report Format	/ Distribution				Select S	ervice L	evel Bel	ow (Rush Tur	naround T	īme (TAT)	is not ava	ilable for	all tests)		
Company: LVM	any: LVM Select Report Format: Dr PDF 🖉 , EXCEL 🗌 🗄 DD (DIGITAL)							R Regular (Standard TAT if received by 3pm)									
Contact: SUSanha Meteer	Quality Control (QC) Report with Rep	ort 🗌 Yes	i 🗌 No	Р	<u> </u>	Priority (2-4 business days if received by 3pm)										
Address:	Criteria on F	teport - provide details bel	ow if box checked		E		Emergen	ry (1-2 b	usiness o	lays if receive	d by 3pm)					
Atchener	Select Distribution	on: . 🛃 🗈	MAIL MAIL	FAX	E2 ·	<u> </u>	Same day	or weel	end em	ergency if rec	eived by 1	10am – co	ntact ALS	for surch	arge.	-	
Phone: 00 211 1212 27	Email 1 or Fax	Email 1 or Fax Sugange. meter Olvm. ca				y Date	Requir	ed for I	E2,E 0	r P:							
S17 741 1312 XZ	Email 2									Analy	sis Req	uest					_
Invoice To Same as Report To Yes VNo		Invoice Di	stribution			1	ndicate F	iltered (F). Prese	rved (P) or Fil	lered and	Preserved	(F/P) bel	ow.			
Copy of Invoice with Report	Select Invoice D	istribution:	EMAIL MAI				~										
Company:	Email 1 or Fax	chns. hel	maroilvi	n.ca			<u> </u>										
Contact: Chris, helmar @ IVM. ca	Email 2				<u>רי</u>		\mathbf{X}										S
Project Information	(Dil and Gas Require	d Fields (client us	ie)	혼		ও										aine
ALS Quote #:	Approver ID:	н. — — — — — — — — — — — — — — — — — — —	Cost Center:		13		3						· 1				ğ
JOD #: 1-0000145-0-00-401-05	GL Account:	· ·	Routing Code:		$\overline{\mathcal{O}}$	4	7		~								ě
PO/AFE: 213152	Activity Code:				$ \mathbf{\nabla} $	F	6		2								ber
LSD:	Location:				8	° -	· _	α	2				·				Nur
ALS Lab Work Order # (Jab use only)	ALS Contact:		Sampler: SU	sanna	বি	2		2	~								
LISTON OUT A LIST COMMENT			m	eteer	1	5	5	ন্থ	2								• .
ALS Sample # Sample identification and/or Co	ordinates	Date	Time	Sample Type	$ \mathcal{T} $	H	D	$ \mathcal{O} $	ź								
(lab use only) (This description will appear on th	e report)	(dd-mmm-yy)	(hh:mm)		ΗŻ	7			_								
SP) (MP2-12)		10.07-14	10:30	1 th U		~	-	-	~								
2 52		-07-14	10:40	HOU		<	~	~	~							_	
				1													
				-													
			·												h		
			<u> </u>	<u> </u>	+						-				<u> </u>		
		·			╂──┨	<u> </u>											
		ļ															
		···				_		_									
		-16. Outload - 4			Tagart.			SAM	LE CC	NDITION	AS'REC	EIVED	(lab use	only)	n segunara. Contactor	AND CONTRACT	excaya Social
Drinking Water (DW) Samples ¹ (client use)	Special Instructions / Spe	city Criteria to add on	report (client Use)	e e su	Frozei	n siger	a da			SIF	Observa	itions -	Yes		No,	_ ()	
Are samples taken from a Regulated DW System?	2D on voi	N-A-A	ac .	10	lcerpa	icks ^e r ^a	Yes	2	No f	Cus 🖸	lody sea	llintagt	Yes	999 <mark>3</mark>	No. •		
res and		miertai plast			Coelin	ng initia	ited		<u>.</u>			de la constance		() () () () () () () () () () () () () () () () (ار بن مناقق من	(14) ويقد بياني
Are samples for human drinking water use?	dissolved	olved metals bh filter.				ITTIALC	OOLERI		NURES		P Zel J N. TIK	FINALIO	DOLER TE	MPERAT	URES *C		
	- (1,33,14	1.		ر من		itting hicki			i ella i	1	1.2.5	5. K.	18.9
SHIPMENT RELEASE (client use)	INITIAL	SHIPMENT RECEP	TION (IB) use only	Time	Ran		547.038 ¹		NAL SI	NINENIOF	CECEPT	ION (la	0 USOIOI	uy) S		Holes - Fri Walk	
Mare 10-07-14 12:30	A Convergence		TANK L	10:350	4	100 03			i metro		and an	and an					

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix 7 Surface Water Impact Assessment

To:	Brad Schildroth	From:	Jim Perrone
	LVM		Stantec Consulting Ltd.
File:	160950758	Date:	July 29, 2014

Reference: Sage Campground Surface Water Impact Assessment

Stantec Consulting was retained by LVM to undertake a Surface Water Impact Assessment as part of the functional and environmental assessment of the private on-site sewage systems that service the Sage Campground property. Components of the Surface Water Impact Assessment included a site visit, watershed delineation of the tributary to Blair Creek, as well as spreadsheet mass balance calculations of sewage parameter releases, and mixing with the surface water receiver.

Total sewage releases from the campground's on-site sewage systems have been estimated by LVM and total approximately 4,744 m³/year. Although effluent quality testing has not been performed, groundwater sampling of the Sage Campground property was conducted at various locations. Sampling of the tributary to Blair Creek was also undertaken by LVM. As detailed in LVM's Sewage Systems Assessment Report, sampling results suggested elevated groundwater concentrations of nitrate-N at various locations adjacent to the tributary, including drainage likely influenced by the Whistle Bear Golf Club and agricultural lands to the south of the Campground. However, surface water quality parameter concentrations were consistently found below applicable Provincial Water Quality Objectives (PWQOs).

METHODS

The Ministry of Environment's (MOE) protocol for assessing effluent quality requirements includes the calculation of the 7Q20 low flow (7-day low flow that can be expected once in 20 years) for the receiving environment, in this case, the Blair Creek tributary. However, the source of the Sage Campground sewage system effluent discharge to the tributary is via groundwater flux rather than a point source discharge. This precludes application of the 7Q20 condition, since sewage releases have the opportunity to mix with long-term groundwater flux prior to discharge to the surface water receiver. The analysis of potential effluent dilution was therefore undertaken on an average annual basis. The net water surplus for the tributary watershed was calculated using the Thornthwaite-Mather method. It was assumed that all the moisture surplus for the south would mix with Campground area releases in the tributary.

RESULTS

Figure 1 shows the Blair Creek tributary drainage area as delineated from available topographical data. The total drainage area of the tributary was calculated to be 42.792 ha. Of this total, 12.458 ha are under agriculture, 14.504 ha are occupied by the golf course, 10.886 ha are occupied by the Campground to the west and north of the tributary, with the remainder (4.944 ha) comprised by wetland and GRCA regulated area.

Table 1 shows the 1981-2010 climate normal for Environment Canada's Waterloo-Wellington A station (Climate ID 6149387), which represents the long-term meteorological monitoring station in closest proximity to the Sage Campground property. Total annual precipitation averages 916.3 mm

Reference: Sage Campground Surface Water Impact Assessment

over the period of record. Using the Thornthwaite-Mather method, an annual average evapotranspiration of 567.1 mm was calculated, indicating an average annual net moisture surplus of 349.2 mm.

Table 1. Waterloo-Wellington A Station Climate Normals 1981-2010																	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year				
Temperature:																	
Daily Average (°C)	-6.5	-5.5	-1	6.2	13	18	20	19	14.5	8.2	2.5	-3.3	7				
Precipitation:																	
Rainfall (mm)	28.7	29.7	36.8	68	82	82	98.6	84	87.8	66	75	38	777				
Snowfall (cm)	43.7	30.3	26.5	7.3	0.4	0	0	0	0	1.4	13	37.2	160				
Precipitation (mm)	65.2	54.9	61.0	74.5	82.3	82.4	98.6	83.9	87.8	67.4 87.1 71.2 916.3							

To estimate current surface water quality impacts from the Sage Campground sewage system, a mass balance of water quality parameter loadings was developed. The mass balance for the Blair Creek tributary was divided into three components, namely, the upstream background, golf course, and Campground sewage areas. Groundwater data from BH8-12 were used to represent combined flows and loadings from the golf course and wetland areas. Although no sewage system effluent sampling was performed, groundwater data from BH3-12 and BH4-12 were used to represent combined sewage system and drainage area flows from the Campground. Background flows and loadings, which express themselves in the two headwater ponds to the north of the agricultural lands, were represented by BH1-12.

Table 2 presents results of the mass balance calculations. Flow rates from respective areas were calculated based on the estimated moisture surplus of 349.2 mm/year. The flow rate for the Campground area includes the estimated annual average effluent flow rate of 4,744 m³/year. To apply a certain level of conservatism, the maximum measured water quality parameter concentration at each borehole location was used to represent the contributing areas.

Table 2. Mass Balance Calculations for Sage Campground Sewage System				
	Background	Golf Course	Campground	Tributary
Flow (m³/day)	119	186	117	422
Ammonia-N (mg/L)	<0.05	0.13	0.109	0.09
Nitrate-N (mg/L)	1.12	4.23	6.61	4.01
E. Coli (CFU/100mL)	240	30	30	89

In reviewing the groundwater quality data for the boreholes, the highly elevated total phosphorus (TP) concentrations measured at various borehole locations (at times greater than 2 mg/L) suggest that groundwater samples were not filtered prior to sampling. All surface water quality sampling of the tributary indicates that TP concentrations are less than the PWQO of 0.03 mg/L. The sandy soils of the tributary watershed likely complex TP to a large extent, rendering TP relatively immobile in the subsurface. Consequently, it was concluded that TP loadings from the sewage system effluent to the tributary are attenuated and a mass balance was therefore not performed for TP.

jtp v:\01609\active\160950758\planning\report\final\tech memo to lvm.docx

Reference: Sage Campground Surface Water Impact Assessment

Results for other effluent parameters indicate that ammonia-N, even when assumed to act conservatively, has little potential to impact the tributary, with a calculated in-stream concentration of 0.09 mg/L. assuming a pH of 8 and a temperature of 25 °C in the tributary, this would only translate to an un-ionized ammonia-N concentration of 0.005 mg/L, which is well below the PWQO of 0.0165 mg-N/L. These results are supported by *in situ* sampling of the tributary, which has shown a maximum ammonia-N concentration of 0.109 mg/L in the spring of 2012 (April 27).

Similarly, assuming that *E*. *Coli* acts conservatively in the subsurface, a tributary concentration of 89 CFU/100 mL is calculated, which is below the PWQO of 100 CFU/100 mL. Although monitoring of the Blair Creek tributary has shown elevated E. Coli concentrations of 220-330 CFU/100 mL, the borehole monitoring data suggest that sewage system effluent is not the source. Other surface sources likely play a role in the elevated *E. Coli* count. This conclusion is supported by sampling of the tributary upstream of the Campground just below the two headponds in July of 2014, which showed *E. Coli* levels of 150 CFU/100 mL.

Finally, the mass balance for nitrate-N suggests that nitrate-N concentrations of approximately 4 ma/L may be produced in the tributary. This is below the concentrations of 5.8-7.6 ma/L observed in the tributary in 2012 but is closer to the level of 5 mg/L observed in July 2014. Although there is no PWQO for nitrate-N, a Canadian Water Quality Guideline (CWQG) of 2.93 mg/L has been established . Variability in upstream background loadings, which were set at 1.12 mg/L based on observations at BH1-12 may account for the underestimation of tributary concentrations. However, upstream sampling of the tributary below the two headponds showed a nitrate-N concentration of 1 mg/L, which appears to confirm the relatively low background loadings. Variability in loadings from the golf course and wetland area may also play a role. Based on the estimated annual background watershed inputs, the sewage effluent flow rate of 4,744 m³/year represents approximately 11% of the Campground area flow rate of 117 m³/day. The assumed nitrate-N concentration of 6.61 mg/L for this flow suggests total nitrogen loadings of approximately 50 mg/L from the sewage system effluent. This is slightly above but similar to the 40 mg/L concentration generally assumed for such systems. Although Blair Creek tributary nitrate-N levels are above the CWQG of 2.93 mg/L, such concentrations are common in the Grand River watershed and are not anticipated to result in impacts to aquatic life.

STANTEC CONSULTING LTD.

Jim Perrone, P.Eng. Senior Water Resources Engineer Phone: 905-415-6344 Fax: 905-474-9889 jim.perrone@stantec.com

Attachment: Figure 1 – Blair Creek Tributary Drainage Area

c. Chris Helmer, LVM

V:N1609/Active/1.60950758/planning/drawing\MXD\Surface_Water\Internal\160950758_Drainage_Area.m Revised: 2014-07-30 By: searles

Legend

- Topographic Contours (mAMSL)

Notes

- 1. Coordinate System: NAD 1983 UTM Zone 17N
- 2. Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2013.
- 3. Orthoimagery © Grand River Conservation Authority, 2006.

July 2014 1609*5*0758

Client/Project

LVM, a Division of EnGlobe Corp. Sage Campground Surface Water

Figure No. **1**

Blair Creek Tributary Drainage Area

Appendix 8 Site Photographs

Photo 1: Secondary Residence - Septic tank.

Photo 2: Secondary Residence - Septic tank location.

Photo 3: Secondary Residence - Existing absorption trench.

Photo 4: Campground Pavilion - Septic tank location.

Photo 5: Campground Pavilion - Absorption trench overflow.

Photo 6: Picnic Pavilion - Holding tank location.

Photo 7: Campground Trailer Site - Septic Tank.

Photo 8: Campground Trailer Site -Septic tank system (3rd generation).

Photo 9: Campground Trailer Site -Septic tank system (3rd generation).

Photo 10: Campground Trailer Site - Sewage System (2nd generation).

Photo 11: Campground Trailer Site - Sewage System (2nd generation).

Photo 12: Campground Trailer Site - Sewage System (1st generation).

Photo 13: Campground Trailer Site - Sewage System (1st generation).

Photo 14: Campground Trailer Site - Sewage System (2nd generation).

Photo 15: Campground Trailer Site - Sewage System (3rd generation).

LVM, a division of EnGlobe Corp.

APPENDIX B: Wastewater Servicing Assessment

FlowSpec Engineering, November 13, 2019

December 17, 2019

Ms. Sarah Primmer, P.Eng. GM BluePlan Engineering Limited 330 Trillium Drive, Unit D Kitchener, ON N2E 3J2

Files No.: 00009-2 Document No.: 00009-2.01

Dear Ms. Primmer:

Subject:

Wastewater Servicing Assessment Whistle Bare Campground – Proposed Expansion 1912 Whistle Bare Road Township of North Dumfries

This report by FlowSpec Engineering ("FlowSpec") presents an assessment of wastewater servicing in support of a proposed expansion of Whistle Bare Campground ("Whistle Bare"), located at 1912 Whistle Bare Road in the Township of North Dumfries.

This assessment is intended to supplement and be conjoined with a broader functional servicing assessment ("FSR") by GM BluePlan Engineering. Onsite wastewater servicing is necessary for Whistle Bare, given the absence of proximal municipal or communal servicing in the area; and on this basis, the FSR addresses wastewater collection/conveyance and this report addresses wastewater treatment/dispersal.

Whistle Bare currently consists of 80 seasonal trailer-sites (each equipped with a dedicated water supply-line and septic system), a public washroom (serviced by a dedicated septic system), a recreation pavilion (no plumbing fixtures), and a picnic pavilion. The campground is situated on the rear (i.e., north) half of the property, while two single-family residences are located at the front of the property.

As it pertains to wastewater servicing, the proposed campground expansion will be comprised of the following: i) realignment of the existing 80 trailer-sites, ii) increase of the total number of sites to 383, including several cabin-sites and overnight-sites, and iii) construction of two recreation hall and pool areas.

In executing the proposed expansion, the existing septic systems that service the campground will be decommissioned and a collection system (i.e., sewers, forcemain, and pump stations) constructed to convey all wastewater to a proposed centralized treatment and subsurface dispersal system or Class 4 wastewater treatment system ("WTS"). Dedicated septic systems will continue to service the two single-family residences. A preliminary site layout and sanitary servicing plan is illustrated on Drawing 3 of the FSR. Drawing 3 also depicts a location at the south corner of the property for the WTS, which has an allotted area of about 10,000 m².

The wastewater flows (i.e., theoretical peak flows calculated using fixed formula from the Ontario Building Code ("OBC")) for both the existing and proposed expanded campground exceed 10,000 L/day, such that the property lies within the jurisdiction of the Ontario Ministry of the Environment, Conservation and Parks ("MECP") under Section 53 of the Ontario Water Resources Act; and therefore, construction of the proposed WTS will require procurement of an Environmental Compliance Approval from the MECP.

Based on the foregoing, the primary purpose of this assessment is to derive relevant preliminary design criteria, and evaluate the suitability of the allotted area for the proposed WTS to accommodate wastewater servicing of the proposed expanded campground.

Design Criteria

For the purpose of this assessment, the principal design criteria for a WTS are percolation time (i.e., soil infiltration rate), wastewater flow, and effluent quality. Preliminary derivation of these parameters is provided below.

Percolation Time

A detailed description of the property, as well as general geological and hydrogeological conditions may be found in the associated hydrogeological assessment report prepared by Chung & Vander Doelen Engineering and submitted concurrently with this report.

The subsurface of the proposed WTS location was explored on July 26, 2017 by excavating seven test pits. FlowSpec monitored the excavation, documented soil stratigraphy and groundwater conditions, and collected representative soil samples for visual examination and laboratory-derived particle-size analysis.

The encountered soil stratigraphy and groundwater conditions are described on appended test pit logs. The location of each test pit was surveyed by FlowSpec and is overlain on an appended version of Drawing 3 of the FSR.

Three selected soil samples were submitted to Stantec (Kitchener) for laboratory-derived particle-size analysis, which was completed in accordance with ASTM Method D422-63, "Standard Test Method for Particle-Size Analysis". The resulting particle-size distribution curves are appended.

The soil stratigraphy and groundwater conditions encountered during the subsurface exploration are described on the appended test pit logs. The soil stratigraphy was generally comprised of surficial topsoil, overlying layers of sandy silt and silty sand/gravel to a depth of up to 0.95 m, and underlain by granular deposits of sand and sand/gravel with a trace of silt. The test pits exhibited no observed groundwater seepage or related wet soil conditions.

For contextual purposes, the monitoring well logs contained in the hydrogeological assessment report (monitoring by FlowSpec during installation) indicate that the granular deposits around the proposed WTS location extend to at least the drilling termination depth of 13.7 m, and the groundwater depth is approximately 10 m.

A percolation time was assessed using the following methodology: i) classify each relevant soil encountered during the subsurface exploration using the Unified Soil Classification System, ii) account for characteristics observed during the subsurface exploration (i.e., density and structure), and iii) correlate with a percolation time using OBC Supplementary Standard SB-6, "Percolation Time and Soil Descriptions". The assessment is summarized in the following table:

Soil Description	Unified Soil Classification	Percolation Time (min/cm)
Fine-grained SAND, trace silt (sampled from Test Pit 1)	SP-SM	5
Fine- to medium-grained SAND, trace silt (sampled from Test Pit 2)	SP	2
Fine- to medium-grained SAND AND GRAVEL, trace silt (sampled from Test Pit 3)	SP-SW	2
Medium- to coarse-grained SAND AND GRAVEL, trace silt (Test Pits 4 and 5)	SW	2 (estimated)

A percolation time of 5 min/cm was used for the assessment, based on founding of the proposed leaching bed on the granular deposits described above.

Wastewater Flow

Wastewater flow from seasonal trailer-sites varies with available service connections (i.e., water and wastewater), the type/size of trailer-unit, and plumbing specifics within the trailer-unit (wastewater generated by the recreation halls and pool areas is considered incidental to use of the trailer-sites).

In this case, the sites will be provided with water and wastewater connections. Theoretical peak flowrates are specified for such sites in the OBC and DGSW, as well as in the MECP documents, "Manual of Policy, Procedure and Guidelines for Onsite Sewage Systems" and "Interim Fact Sheet: MOECC Design Sewage Flow Rates for Seasonal Trailer Parks and Park Model Units", and are summarized in the following table:

Document	Peak Wastewater Flow-Rate (L/day)
Ontario Building Code	425
Design Guidelines for Sewage Works	800
Manual of Policy, Procedure and Guidelines for Onsite Sewage Systems	125 - 425
Interim Fact Sheet: MOECC Design Sewage Flow Rates for Seasonal Trailer Parks and Park Model Units	800

As evidenced by the table above, theoretical flow-rates vary widely; and for this reason, FlowSpec typically approaches design for seasonal campgrounds using a combination of theoretical and empirical flow-rates (empirical rates are calculated from metered water-usage). In the experience of FlowSpec, empirical peak flow-rates are typically in the order of about 200 to 250 L/day/site for travel-trailers and up to about 425 L/day/site for larger park-model-units.

For specific design of the proposed WTS at Whistle Bare, FlowSpec will derive a total peak wastewater flow using a combination of empirical water-use data from the existing 80 trailer-sites and theoretical flow-rates commensurate with the proposed expansion. This figure will be determined once additional information is available concerning the units to be placed on the sites; and therefore, for the purpose of this assessment, the hydraulic capacity of the available area was evaluated to determine its suitability to accommodate a reasonable peak flow for the proposed expanded campground (discussed below).

Effluent Quality

DGSW Section 22.5, "Assessment of Impact on Water Resources", sets forth the environmental impact assessment requirements for "Large Subsurface Sewage Disposal Systems" (i.e., systems with theoretical peak wastewater flows which exceed 10,000 L/day). Specifically, the document speaks to assessing impact on water resources in conformance with MECP contaminant emission guidelines. "Water resources" are typically comprised of the following:

- groundwater which is currently used or could reasonably be used in future as a potable watersupply (typically within 500 m of the proposed leaching bed location); and
- surface water in the form of creeks, rivers, ponds, or wetlands (typically within 300 m of the proposed leaching bed location).

In this case, groundwater is used as a water-supply in the area, and a wetland complex and outflowing tributary to Blair Creek are located on the northerly portion of the property (described in further detail in the hydrogeological assessment report). Therefore, an assessment of impact of water resources will be required to be performed as part of the design process and to the satisfaction of the MECP.

Specifically, DGSW Subsection 22.5.5, "Critical Contaminants", stipulates that nitrate-nitrogen is the critical contaminant normally to be used in the assessment of impact on groundwater; and phosphorous, ammonia-nitrogen, and nitrate-nitrogen are the critical contaminants normally to be used in the assessment of impact on surface water. Since ammonia-nitrogen is presumed to convert completely to nitrate-nitrogen in the subsurface, nitrate-nitrogen and phosphorous would be the critical contaminants used in the impact assessment.

The impact assessment would yield effluent concentration objectives and/or limits for one or both of nitrate-nitrogen or phosphorous, which would then be vetted by the MECP during pre-application consultation; and upon finalization of the criteria, design of the WTS would incorporate treatment infrastructure as required to achieve the criteria.

Assessment

On the basis of the design criteria described above, the proposed WTS will be comprised of the following key components:

- treatment system capable of achieving Level IV (i.e., tertiary) effluent quality, and including treatment infrastructure for reduction of nitrate-nitrogen and/or phosphorous if deemed necessary by the assessment of impact on water resources; and
- Type A dispersal leaching bed for final treatment and dispersal of effluent to the subsurface (consisting of a layer of imported stone containing a series of perforated gravity distribution pipes, and underlain by a layer of imported sand fill with a percolation time of 6 to 10 min/cm).

As described in the introduction, an area of about 10,000 m² has been allotted for the proposed WTS, and specifically the leaching bed. The maximum peak wastewater flow that may be accommodated by a Type A dispersal bed occupying the entirety of the allotted area is calculated below, based on OBC Sentence 8.7.7.1.(6). which addresses the minimum required stone area:

 $Q = A \times 50 L/day/m^2$

where: *Q* = maximum peak wastewater flow (L/day) *A* = available area (m²)

Q = 10,000 m² x 50 L/day/m² = 500,000 L/day

Where the percolation time is 15 min/cm or less, the overall area requirement for a Type A dispersal leaching bed is based solely on the minimum required stone area. Given the percolation time is 5 min/cm in the proposed leaching bed area, the maximum peak wastewater flow that may be accommodated in the 10,000 m² allotted area is 500,000 L/day.

A groundwater mounding analysis was applied to the maximum peak flow, and yielded a maximum mound-height of about 1 m; and therefore, based on a groundwater depth of about 10 m, groundwater mounding will not affect performance of the leaching bed.

Based on the proposed expanded campground site total of 383, a peak wastewater flow of 500,000 L/day yields a peak flow-rate of approximately 1,300 L/day/site, which is well-above both the theoretical and empirical flow-rates for seasonal trailer-sites described above.

Conclusion

In conclusion, the proposed expanded campground may be serviced by an onsite Class 4 WTS within the 10,000 m² area allotted for the proposed leaching bed, provided the following processes are undertaken following the Zoning By-law Amendment Application process: i) an assessment of impact on water resources is to be performed to the satisfaction of the MECP, ii) pre-application consultation is to be completed with the MECP to finalize effluent criteria, and iii) an Environmental Compliance Approval is to be procured from the MECP.

Should you have any questions regarding the above, please do not hesitate to contact the undersigned.

Yours truly, FlowSpec Engineering Ltd.

David Morlock, P.Eng. Consulting Engineer

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		TOPSOIL: Dark brown sandy silt, some gravel, moist		
0.20		<u>SANDY SILT</u> : Rusty brown sandy silt, some gravel, moist		
0.40		<u><i>GRAVELLY SAND</i></u> : Loose, brown, gravelly fine to coarse sand, trace silt, damp		
0.80		<u>SAND</u> : Compact, brown fine sand, trace silt, damp	1	1.0 - 1.2

Comments:

- test pit terminated at 1.9 m
- no groundwater seepage observed
- dry caving observed at 1.7 m

Test Pit 2

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		<u>TOPSOIL</u> : Dark brown silt, moist		
0.25		<i>SILT</i> : Firm, rusty brown silt, some clay and sand, trace gravel, moist		
0.80		<u>SILTY SAND</u> : Brown silty sand, moist		
0.95		<u>SAND AND GRAVEL</u> : Loose, brown medium sand and gravel, trace silt, damp		
1.30		<u>SAND</u> : Compact, brown fine to medium sand, trace silt, damp	1	1.6 – 1.8

Comments:

- test pit terminated at 2.1 m
- no groundwater seepage observed
- test pit sidewalls stable at completion of excavation

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		<u>TOPSOIL</u> : Dark brown sandy silt, moist		
0.30		SANDY SILT: Rusty brown sandy silt, trace gravel, damp to moist		
0.50		<u>SILTY SAND AND GRAVEL</u> : Loose, brown, silty sand and gravel, damp		
0.90		<u>SAND AND GRAVEL</u> : Loose, brown fine to medium sand and gravel, trace silt, frequent cobbles and boulders, damp	1	1.2 – 1.4
1.40		<u>SAND</u> : Loose, brown medium sand, trace silt, damp		

Comments:

- test pit terminated at 2.0 m
- no groundwater seepage observed
- dry caving observed at 1.4 m

Test Pit 4

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		TOPSOIL: Dark brown sandy silt, damp		
0.20		<u>SAND</u> : Compact, brown medium sand, some gravel, trace silt, damp		
1.10		medium to coarse sand	1	1.2 – 1.4
1.80		fine sand		

Comments:

• test pit terminated at 2.0 m

- no groundwater seepage observed
- test pit sidewalls stable at completion of excavation

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		TOPSOIL: Dark brown sandy silt, moist		
0.20		<u>SANDY SILT</u> : Rusty brown sandy silt, moist		
0.35		SILTY SAND AND GRAVEL: Brown silty sand and gravel, moist		
0.60		SAND AND GRAVEL: Loose, brown medium to coarse sand and gravel, trace silt, damp		

Comments:

- test pit terminated at 1.7 m
- no groundwater seepage observed
- test pit sidewalls stable at completion of excavation

Test Pit 6

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		<u>TOPSOIL</u> : Dark brown sandy silt, moist		
0.20		<u>SANDY SILT</u> : Rusty brown sandy silt, moist		
0.35		SILTY SAND AND GRAVEL: Brown silty sand and gravel, moist		
0.65		<u>SAND AND GRAVEL</u> : Loose, brown medium to coarse sand and gravel, trace silt, damp; veins of medium to coarse sand, damp		

Comments:

- test pit terminated at 1.8 m
- no groundwater seepage observed
- dry caving observed at 0.8 m

Date of Excavation:	July 26, 2017
Machine:	Mini-Excavator
Surface Elevation:	
Field Technician:	DM

Depth (m)	Elevation (m)	Soil Description	Sample No.	Sample Depth (m)
0.00		<u>TOPSOIL</u> : Dark brown sandy silt, moist		
0.25		<u>SANDY SILT</u> : Rusty brown sandy silt, moist		
0.45		SILTY SAND AND GRAVEL: Brown silty sand and gravel, moist		
0.80		<u>SAND AND GRAVEL</u> : Loose, brown medium sand and gravel, damp		
1.40		<u>SAND</u> : Compact, brown fine sand, trace silt, damp		

Comments:

• test pit terminated at 2.0 m

• no groundwater seepage observed

• dry caving observed at 1.1 m

APPENDIX C: Stormwater Management Analysis

Existing Condition Modelling Files Post-Development Condition Modeling Files Water Budget

"			MIDUSS Output	····
"			MIDUSS version	Version 2.25 rev. 473
"			MIDUSS created	Sunday, February 07, 2010
"		10	Units used:	ie METRIC
"			Job folder:	W:\Kitchener\416-2016\
"			416130 Whistle Bare Road	Campground\5 Work in Progress\Design
Cá	alcs	\MIDUSS"		
"			Output filename:	416130_EX_2.out
"			Licensee name:	gmbp
"			Company	gmbp
"			Date & Time last used:	9/13/2019 at 2:07:02 PM
"	31	TI	ME PARAMETERS"	
"		5.000	Time Step"	
"		180.000	Max. Storm length"	
"		1500.000	Max. Hydrograph"	
"	32	ST	ORM Chicago storm"	
"		1	Chicago storm"	
"		573.100	Coefficient A"	
"		5.000	Constant B"	
"		0.761	Exponent C"	
"		0.400	Fraction R"	
"		180.000	Duration"	
"		1.000	Time step multiplier"	
"		Ма	iximum intensity	99.364 mm/hr"
"		Тс	otal depth	32.362 mm"
		6	002hyd Hydrograph exter	nsion used in this file"
	33	CA	TCHMENT 10"	
		1	Triangular SCS"	
		1	Equal length"	
		1	SCS method"	
		10	Catchment 10"	
		15.000	% Impervious"	
		28.600	Total Area"	
		90.000	Flow length"	
		2.000	Overland Slope"	
		24.310	Pervious Area"	
		90.000	Pervious length"	
		2.000	Pervious slope"	
		4.290	Impervious Area"	
		90.000	Impervious length"	
		2.000	Impervious slope"	
		0.250	Pervious Manning n	
		/5.000	Pervious SLS CUrve NO.	ont"
		0.102	Pervious Kunott Coetticle	
		0.100	Pervious Ia/S COETTICIEN	t tion"
		0.40/ 0.015	Tervious Initial abstract	
		00 000 CID.0	Impervious Manning II	п
		90.000	Timbellations 2C2 Chline NO.	

416130_EX_2

				416130_EX_2			
"	0.838	Impervious	Runoff co	oefficient"			
"	0.100	Impervious	Ia/S coe	fficient"			
"	0.518	Impervious	Initial a	abstraction'	1		
"		0.820	0.00	0.000	0.000	c.m/sec"	
"	(atchment 10		Pervious	Impervious	Total Area	
"	2	Surface Area		24.310	4.290	28.600	hectare"
"	T	ime of concer	ntration	55.708	4.452	31.290	minutes"
"	1	ime to Centro	oid	172.274	95.832	135.857	minutes"
"	F	≀ainfall depth	า	32.362	32.362	32.362	mm"
"	F	≀ainfall volur	ne	7867.18	1388.33	9255.50	c.m"
"	F	ainfall losse	es	27.103	5.249	23.825	mm"
"	F	lunoff depth		5.259	27.113	8.537	mm"
"	F	unoff volume		1278.38	1163.13	2441.52	c.m"
"	F	unoff coeffic	cient	0.162	0.838	0.264	"
"	Μ	laximum flow		0.177	0.800	0.820	c.m/sec"
"	40 H	IYDROGRAPH Add	d Runoff				
"	4	Add Runoff					
"		0.820	0.82	0.000	0.000"		
"	33 C	ATCHMENT 20"					
"	1	Triangular	SCS"				
	1	Equal leng	th"				
	1	SCS method					
	20	Catchment 2	20"				
	0.000	% Impervio	us"				
	10.000	Total Area					
	90.000	Flow length	า"				
	2.000	Overland S.	Lope"				
	10.000	Pervious Ar	rea"				
	90.000	Pervious le	ength"				
	2.000	Pervious s	Lope"				
	0.000	Impervious	Area"				
	90.000	Impervious	length"				
	2.000	Impervious	siope				
	0.250	Pervious Ma	anning n				
	/5.000	Pervious Su	S Curve I	NO. Eficiant"			
	0.162	Pervious Ru	UNOTT COE	rricient			
	0.100	Pervious la	a/S COETT	icient straction"			
	8.40/ 0.01E	Transputious In	Manning	straction			
	0.010	Impervious					
	98.000	Impervious		e NO.			
	0.000	Impervious		fficient"			
	0.100	Impervious	Initial	abstraction'			
	0.010	0 073	0 82		0 000	m/sec"	
	C	atchment 20	0.020	Pervious	Impervious	Total Area	п
		Surface Area		10.000	0.000	10.000	hectare"
	- 1	ime of concer	ntration	55.708	4.452	55.708	minutes"
"	T	ime to Centro	oid	172.274	0.000	172.274	minutes"

		416130_EX_2	2		
"	Rainfall depth	32.362	32.362	32.362	mm"
"	Rainfall volume	3236.19	0.00	3236.19	c.m"
"	Rainfall losses	27.103	32.362	27.103	mm"
"	Runoff depth	5.259	0.000	5.259	mm"
"	Runoff volume	525.87	0.00	525.87	c.m"
"	Runoff coefficient	0.162	0.000	0.162	
"	Maximum flow	0.073	0.000	0.073	c.m/sec"
" 40	HYDROGRAPH Add Runoff				
"	4 Add Runoff "				
"	0.073 0.82	9 0.000	0.00	0"	
" 38	START/RE-START TOTALS	20"			
"	3 Runoff Totals on EX	IT"			
	Total Catchment area			38.600	hectare"
	Total Impervious area			4.290	hectare"
	Total % impervious			11.114"	
" 19	EXIT"				

"			MIDUSS Output	
"			MIDUSS version	Version 2.25 rev. 473"
"			MIDUSS created	Sunday, February 07, 2010"
"		10	Units used:	ie METRIC"
"			Job folder:	W:\Kitchener\416-2016\"
"			416130 Whistle Bare Road	Campground\5 Work in Progress\Design
Ca	alcs	\MIDUSS"		
"			Output filename:	416130_EX_5.out"
"			Licensee name:	gmbp"
"			Company	gmbp"
"			Date & Time last used:	9/13/2019 at 2:14:43 PM"
"	31	TI	ME PARAMETERS"	
"		5.000	Time Step"	
"		180.000	Max. Storm length"	
"		1500.000	Max. Hydrograph"	
"	32	ST	ORM Chicago storm"	
"		1	Chicago storm"	
"		1219.800	Coefficient A"	
"		10.500	Constant B"	
"		0.823	Exponent C"	
"		0.400	Fraction R"	
"		180.000	Duration"	
"		1.000	Time step multiplier"	
"		Ма	ximum intensity	127.834 mm/hr"
"		То	tal depth	48.647 mm"
"		6	005hyd Hydrograph exter	nsion used in this file"
"	33	CA	TCHMENT 10"	
"		1	Triangular SCS"	
"		1	Equal length"	
"		1	SCS method"	
"		10	Catchment 10"	
		15.000	% Impervious"	
		28.600	Total Area"	
		90.000	Flow length"	
		2.000	Overland Slope"	
		24.310	Pervious Area"	
		90.000	Pervious length"	
		2.000	Pervious slope"	
		4.290	Impervious Area"	
		90.000	Impervious length"	
		2.000	Impervious slope"	
		0.250	Pervious Manning 'n'"	
		/5.000	Pervious SCS Curve No."	
		0.266	Pervious Kunott coetticie	
		0.100	Pervious Ia/S coetticient	[- 2 1]
		8.46/	rervious initial abstract	cion di ciona di cion
		0.015	Impervious Manning "n"	1
		98.000	Impervious SCS Curve NO.	

				416130_EX_5			
"	0.881	Impervious	Runoff co	oefficient"			
"	0.100	Impervious	Ia/S coe	fficient"			
"	0.518	Impervious	Initial a	abstraction'	1		
"		1.248	0.00	0.000	0.000 (.m/sec"	
"	C	atchment 10		Pervious	Impervious	Total Area	п
"	S	urface Area		24.310	4.290	28.600	hectare"
"	Т	ime of concer	ntration	37.755	3.958	25.275	minutes"
"	Т	ime to Centro	oid	147.066	93.045	127.118	minutes"
"	R	ainfall depth	า	48.647	48.647	48.647	mm"
"	R	ainfall volur	ne	1.1826	0.2087	1.3913	ha-m"
"	R	ainfall losse	es	35.722	5.767	31.229	mm"
"	R	unoff depth		12.925	42.880	17.418	mm"
"	R	unoff volume		3141.96	1839.57	4981.53	c.m"
"	R	unoff coeffic	cient	0.266	0.881	0.358	п
"	M	laximum flow		0.638	1.132	1.248	c.m/sec"
"	40 H	YDROGRAPH Add	d Runoff	"			
"	4	Add Runoff					
"		1.248	1.24	8 0.000	0.000"		
"	33 C	ATCHMENT 20"					
"	1	Triangular	SCS"				
"	1	Equal lengt	th"				
"	1	SCS method'					
"	20	Catchment 2	20"				
"	0.000	% Impervio	us"				
"	10.000	Total Area'					
"	90.000	Flow length	า"				
"	2.000	Overland SI	lope"				
"	10.000	Pervious Ar	rea"				
"	90.000	Pervious le	ength"				
	2.000	Pervious sl	lope"				
	0.000	Impervious	Area"				
	90.000	Impervious	length"				
	2.000	Impervious	slope"				
	0.250	Pervious Ma	anning 'n				
	/5.000	Pervious SC	CS Curve I	No."			
	0.266	Pervious Ru	unott coe	fficient"			
	0.100	Pervious Ia	a/S coett:	icient" "			
	8.46/	Pervious Ir	nitial ab	straction"			
	0.015	Impervious	Manning	'n'"			
	98.000	Impervious	SCS Curve	e No."			
	0.000	Impervious	Runott co	oetticient"			
	0.100	Impervious	Ia/S coe	tticient"			
	0.518	Impervious	Initial	abstraction [.]		/ H	
	_	0.262	1.24	8 0.000	0.000 (.m/sec	
		atchment 20		Pervious	impervious	IOTAL Area	h
	5	urtace Area	+	10.000	0.000	70.000	nectare"
	 	Ine of concer		3/./35 147 0CC	3.938 03 045	3/./35	minutes"
	I	ime to centro	JTU	14/.000	93.045	14/.000	minutes

		416130_EX_5	5		
"	Rainfall depth	48.647	48.647	48.647	mm"
"	Rainfall volume	4864.70	0.00	4864.70) c.m"
	Rainfall losses	35.722	5.767	35.722	mm"
	Runoff depth	12.925	42.880	12.925	mm"
"	Runoff volume	1292.45	0.00	1292.46	5 c.m"
"	Runoff coefficient	0.266	0.000	0.266	п
	Maximum flow	0.262	0.000	0.262	c.m/sec"
" 40	HYDROGRAPH Add Runoff				
"	4 Add Runoff "				
	0.262 1.29	96 0.000	0.00	3"	
" 38	START/RE-START TOTALS	20"			
	3 Runoff Totals on EX	KIT"			
	Total Catchment area			38.600	hectare"
	Total Impervious area			4.290	hectare"
	Total % impervious		-	11.114"	
" 19	EXIT"				

"			MIDUSS Output>	"
"			MIDUSS version Version 2.25 rev. 473	"
"			MIDUSS created Sunday, February 07, 2010	"
"		10	Units used: ie METRIC	"
"			Job folder: W:\Kitchener\416-2016\	"
"			416130 Whistle Bare Road Campground\5 Work in Progress\Design	
Ca	alcs\M	IDUSS"		
п			Output filename: 416130 EX 100.out	"
"			Licensee name: gmbp	"
"			Company gmbp	"
"			Date & Time last used: 9/13/2019 at 2:15:39 PM	
"	31	TI	ME PARAMETERS"	
"		5.000	Time Step"	
"		180.000	Max. Storm length"	
"	1	500.000	Max. Hydrograph"	
"	32	ST	ORM Chicago storm"	
"		1	Chicago storm"	
"	3	015.100	Coefficient A"	
"		21.000	Constant B"	
"		0.870	Exponent C"	
"		0.400	Fraction R"	
"		180.000	Duration"	
"		1.000	Time step multiplier"	
"		Ма	aximum intensity 177.123 mm/hr"	
"		Тс	otal depth 89.669 mm"	
"		6	100hyd Hydrograph extension used in this file"	
"	33	CA	ATCHMENT 10"	
"		1	Triangular SCS"	
"		1	Equal length"	
"		1	SCS method"	
"		10	Catchment 10"	
"		15.000	% Impervious"	
"		28.600	Total Area"	
"		90.000	Flow length"	
"		2.000	Overland Slope"	
"		24.310	Pervious Area"	
"		90.000	Pervious length"	
"		2.000	Pervious slope"	
"		4.290	Impervious Area"	
"		90.000	Impervious length"	
"		2.000	Impervious slope"	
"		0.250	Pervious Manning 'n'"	
"		75.000	Pervious SCS Curve No."	
"		0.443	Pervious Runoff coefficient"	
"		0.100	Pervious Ia/S coefficient"	
"		8.467	Pervious Initial abstraction"	
"		0.015	Impervious Manning 'n'"	
"		98.000	Impervious SCS Curve No."	

416130_EX_100

			4	16130_EX_10	0		
"	0.922	Impervious	Runoff co	oefficient"			
"	0.100	Impervious	Ia/S coe	fficient"			
"	0.518	Impervious	Initial a	abstraction'	1		
"		3.171	0.00	0.000	0.000 (c.m/sec"	
"	C	atchment 10		Pervious	Impervious	Total Area	"
"	5	Surface Area		24.310	4.290	28.600	hectare"
"	Т	ime of concer	ntration	25.591	3.434	19.638	minutes"
"	Т	ime to Centro	oid	128.770	91.156	118.663	minutes"
"	R	ainfall depth	ו	89.669	89.669	89.669	mm''
"	R	ainfall volur	ne	2.1799	0.3847	2.5645	ha-m"
"	R	ainfall losse	es	49.970	7.015	43.526	mm''
"	R	unoff depth		39.699	82.654	46.143	mm"
"	R	unoff volume		0.9651	0.3546	1.3197	ha-m"
"	R	unoff coeffic	cient	0.443	0.922	0.515	"
"	Μ	laximum flow		2.613	1.695	3.171	c.m/sec"
"	40 H	IYDROGRAPH Add	d Runoff '				
"	4	Add Runoff					
"		3.171	3.17	1 0.000	0.000"		
"	33 C	ATCHMENT 20"					
"	1	Triangular	SCS"				
"	1	Equal lengt	th"				
"	1	SCS method'	•				
"	20	Catchment 2	20"				
"	0.000	% Impervio	ıs"				
"	10.000	Total Area'	•				
"	90.000	Flow length	า"				
"	2.000	Overland S	Lope"				
"	10.000	Pervious Ar	rea"				
"	90.000	Pervious le	ength"				
"	2.000	Pervious sl	Lope"				
"	0.000	Impervious	Area"				
"	90.000	Impervious	length"				
"	2.000	Impervious	slope"				
	0.250	Pervious Ma	anning 'n				
	75.000	Pervious SC	CS Curve I	No."			
	0.443	Pervious Ru	inott coe	fficient"			
	0.100	Pervious Ia	a/S_coett:	icient" "			
	8.46/	Pervious Ir	nitial ab	straction"			
	0.015	Impervious	Manning	· n · · ·			
	98.000	Impervious	SCS Curve	e No.			
	0.000	Impervious	Runott co	oetticient"			
	0.100	Impervious	la/S coe	tticient"			
	0.518	1 orc			0.000		
	~	1.0/5	3.1/.			Totol Anco	п
		Junfaco Anos		10 000		10 000	hoctono"
	С Т	ime of concor	ntnation	10.000	3 131	10.000 25 501	minutoc"
	ן ד	ime to Control	ici acron	23.391 128 770	91 156	23.391 128 770	minutes
	1	THE COLENCE) <u>-</u> U	120.//0	~	120.//0	millio (CS

			416130_EX_10	90		
"		Rainfall depth	89.669	89.669	89.669	mm"
"		Rainfall volume	8966.89	0.01	8966.90) c.m"
"		Rainfall losses	49.970	7.015	49.970	mm''
"		Runoff depth	39.699	82.654	39.699	mm''
"		Runoff volume	3969.94	0.01	3969.94	1 c.m"
"		Runoff coefficient	0.443	0.000	0.443	п
"		Maximum flow	1.075	0.000	1.075	c.m/sec"
"	40	HYDROGRAPH Add Runoff	п			
"		4 Add Runoff "				
"		1.075 4.23	31 0.000	0.000"		
"	38	START/RE-START TOTALS	20"			
"		3 Runoff Totals on EX	KIT"			
"		Total Catchment area		38	.600	hectare"
"		Total Impervious area		4	.290	hectare"
"		Total % impervious		11	.114"	
"	19	EXIT"				

		41613	0_PrePOST_2
"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	W:\Kitchener\416-2016\"
"		416130 Whistle Bare Ro	ad Campground\5 Work in Progress\Design
Ca	alcs\MIDUSS"		
"		Output filename:	416130_PrePOST_2.out"
"		Licensee name:	gmbp"
"		Company	gmbp"
"		Date & Time last used:	11/7/2019 at 10:57:30 AM"
"	31	TIME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32	STORM Chicago storm"	
"	1	Chicago storm"	
"	573.100	Coefficient A"	
"	5.000	Constant B"	
"	0.761	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
"	I	Maximum intensity	99.364 mm/hr"
"	-	Total depth	32.362 mm"
"	6	002hyd Hydrograph ex	tension used in this file"
"	33 (CATCHMENT 100"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	1	SCS method"	
"	100	Catchment 100"	
"	40.000	% Impervious"	
"	7.600	Total Area"	
"	90.000	Flow length"	
"	2.000	Overland Slope"	
"	4.560	Pervious Area"	
"	90.000	Pervious length"	
"	2.000	Pervious slope"	
"	3.040	Impervious Area"	
"	90.000	Impervious length"	
"	2.000	Impervious slope"	
	0.250	Pervious Manning 'n'"	
	75.000	Pervious SCS Curve No.	
	0.162	Pervious Runoff coeffi	cient"
	0.100	Pervious Ia/S coeffici	ent"
	8.467	Pervious Initial abstr	action"
	0.015	Impervious Manning 'n'	
"	98.000	Impervious SCS Curve N	0."

			410	6130_PrePOST	Г_2		
"	0.838	Impervious	Runoff co	oefficient"			
"	0.100	Impervious	Ia/S coe	fficient"			
"	0.518	Impervious	Initial a	abstraction'			
"		0.571	0.00	0.000	0.000 (.m/sec"	
"	C	atchment 100		Pervious	Impervious	Total Area	
"	S	urface Area		4.560	3.040	7.600	hectare"
"	Т	ime of concer	ntration	55.708	4.452	16.003	minutes"
"	Т	ime to Centro	oid	172.274	95.832	113.059	minutes"
"	R	ainfall depth	า	32.362	32.362	32.362	mm"
"	R	ainfall volum	ne	1475.70	983.80	2459.50	c.m"
"	R	ainfall losse	25	27.103	5.249	18.362	mm"
"	R	unoff depth		5.259	27.113	14.000	mm"
"	R	unoff volume		239.80	824.22	1064.02	c.m"
"	R	unoff coeffic	cient	0.162	0.838	0.433	п
	Μ	laximum flow		0.033	0.567	0.571	c.m/sec"
	40 H	YDROGRAPH Add	d Runoff '				
	4	Add Runoff	"				
		0.571	0.57	1 0.000	0.000"		
	33 C	ATCHMENT 101'	1				
	1	Triangular	SCS"				
	1	Equal lengt	ch"				
	1	SCS method'	,				
	101	Catchment 1	LØ1"				
	30.000	% Imperviou	ıs"				
	12,600	Total Area'	,				
	90.000	Flow length	י"				
	2.000	Overland SI	lope"				
	8.820	Pervious Ar	rea"				
	90.000	Pervious le	ength"				
	2.000	Pervious s	lope"				
	3.780	Impervious	Area"				
	90.000	Impervious	length"				
	2.000	Impervious	slope"				
	0.250	Pervious Ma	anning 'n				
"	75.000	Pervious SC	S Curve I	No."			
	0.162	Pervious Ru	unoff coe	fficient"			
"	0.100	Pervious Ia	A/S coeff:	icient"			
	8.467	Pervious Ir	nitial ab	straction"			
	0.015	Impervious	Manning	'n'"			
	98.000	Impervious	SCS Curve	e No."			
	0.838	Impervious	Runoff co	oefficient"			
	0.100	Impervious	Ia/S coe	fficient"			
	0.518	Impervious	Initial a	abstraction'			
"	0.010	0.712	0.57	1 0.000	0.000	.m/sec"	
"	C	atchment 101		Pervious	Impervious	Total Area	
	S	urface Area		8.820	3.780	12.600	hectare"
"	T	ime of concer	ntration	55.708	4.452	20.421	minutes"
"	Т	ime to Centro	oid	172.274	95.832	119.648	minutes"

		4	16130_PrePOS	T_2		
"	Rainfa	all depth	32.362	32.362	32.362	mm"
"	Rainfa	all volume	2854.32	1223.28	4077.60	c.m"
"	Rainfa	all losses	27.103	5.249	20.547	mm''
"	Runof	f depth	5.259	27.113	11.815	mm''
"	Runof	f volume	463.81	1024.86	1488.67	c.m"
"	Runoft	f coefficient	0.162	0.838	0.365	"
"	Maximu	um flow	0.064	0.705	0.712	c.m/sec"
"	40 HYDROO	GRAPH Add Runoff	п			
"	4 Add	d Runoff "				
"		0.712 1.2	83 0.000	0.000"		
"	33 CATCH	MENT 102"				
"	1 Tri	iangular SCS"				
"	1 Equ	ual length"				
"	1 SCS	S method"				
"	102 Cat	tchment 102"				
"	75.000 % 1	Impervious"				
"	8.400 Tot	tal Area"				
"	90.000 Flo	ow length"				
"	2.000 Ove	erland Slope"				
"	2.100 Per	rvious Area"				
"	90.000 Per	rvious length"				
"	2.000 Per	rvious slope"				
	6.300 Imp	pervious Area"				
"	90.000 Imp	pervious length"				
	2.000 Imp	pervious slope"				
	0.250 Per	rvious Manning '	n'"			
"	75.000 Per	rvious SCS Curve	No."			
	0.162 Per	rvious Runoff co	efficient"			
	0.100 Per	rvious Ia/S coef	ficient"			
	8.467 Per	rvious Initial a	bstraction"			
	0.015 Imp	pervious Manning	'n'"			
	98.000 Imp	pervious SCS Cur	ve No."			
	0.838 Imp	pervious Runott	coefficient"			
	0.100 Imp	pervious la/S co	efficient"			
	0.518 Imp	pervious initial	abstraction	0.000		
	Catabu	1.1// 1.2	83 0.000	0.000 0	c.m/sec [~]	
	Catchr	nent 102	Pervious	Impervious	Total Area	
	Surta	ce Area of concontration	2.100	0.300	8.400	nectare
	Time (of concentration	55./08	4.452	100 474	minutes
		all donth	1/2.2/4	95.652	100.474	minutes
	RdlllTo	all velume	52.502	32.302	32.302	
	Rainta	arr vorume	0/3.00 201 70	2020.00 5 210	2/10,40 10 712	C.III mm"
	Rd1()Tc	f donth	5 250	J,249 07 110	10./15 21 6/0	11111 mm"
	Runof-	f volume	110 12	1708 10	21.049 1818 52	
	Runoff	f coefficient	0 167	0 838	1010.00	с.ш п
	Mavimi		0.102	1 175	1 177	c m/sec"
		GRAPH Add Runoff			±•±//	C.m/ 3CC

			4161	30_PrePOS1	ſ_2		
"	4	Add Runoff "		_	_		
"		1.177	2.460	0.000	0.000"		
"	33 CA	TCHMENT 200"					
"	1	Triangular SCS	5"				
"	1	Equal length"					
"	1	SCS method"					
"	200	Catchment 200'	•				
"	0.000	% Impervious"					
"	10.000	Total Area"					
"	90.000	Flow length"					
"	2.000	Overland Slope	ē.				
"	10.000	Pervious Area					
"	90.000	Pervious lengt	th"				
"	2.000	Pervious slope	2"				
"	0.000	Impervious Are	ea"				
"	90.000	Impervious ler	ngth"				
"	2.000	Impervious slo	ope"				
"	0.250	Pervious Mann	ing 'n'"				
"	75.000	Pervious SCS (Curve No	•"			
"	0.162	Pervious Runot	ff coeff	icient"			
"	0.100	Pervious Ia/S	coeffic	ient"			
"	8.467	Pervious Init:	ial abst	raction"			
"	0.015	Impervious Mar	nning 'n				
"	98.000	Impervious SCS	5 Curve	No."			
"	0.000	Impervious Rur	noff coe	fficient"			
"	0.100	Impervious Ia	/S coeff	icient"			
"	0.518	Impervious In	itial ab	straction'	•		
"		. 0.073	2.460	0.000	0.000 0	.m/sec"	
"	Ca	tchment 200	Р	ervious	Impervious	Total Area	п
"	Su	rface Area	1	0.000	0.000	10.000	hectare"
"	Ti	me of concentra	ation 5	5.708	4.452	55.708	minutes"
"	Ti	me to Centroid	1	72.274	95.832	172.273	minutes"
"	Ra	infall depth	3	2.362	32.362	32.362	mm"
"	Ra	infall volume	3	236.19	0.00	3236.19	c.m"
"	Ra	infall losses	2	7.103	5.249	27.103	mm"
"	Ru	noff depth	5	.259	27.113	5.259	mm"
"	Ru	noff volume	5	25.87	0.00	525.87	c.m"
"	Ru	noff coefficier	nt 0	.162	0.000	0.162	н
"	Ma	ximum flow	0	.073	0.000	0.073	c.m/sec"
"	40 HY	DROGRAPH Add Ru	unoff "				
"	4	Add Runoff "					
"		0.073	2.469	0.000	0.000"		

		4161	30_PrePOST_5
"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	W:\Kitchener\416-2016\"
"		416130 Whistle Bare R	<pre>bad Campground\5 Work in Progress\Design</pre>
Ca	alcs\MIDUSS"		
"		Output filename:	416130_PrePOST_5.out"
"		Licensee name:	gmbp"
"		Company	gmbp"
"		Date & Time last used	11/7/2019 at 11:02:03 AM"
"	31 1	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 5	STORM Chicago storm"	
"	1	Chicago storm"	
"	1219.800	Coefficient A"	
"	10.500	Constant B"	
"	0.823	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
	M	laximum intensity	127.834 mm/hr"
	1	otal depth	48.647 mm"
	6	005hyd Hydrograph e	ctension used in this file"
	33 (ATCHMENT 100"	
	1	Triangular SCS"	
	1	Equal length"	
	1	SCS method"	
	100	Catchment 100	
	40.000	% Impervious"	
	7.600	lotal Area	
	90.000	Flow length Ovenland Slone"	
	2.000	Depuique Apos"	
	4.500	Pervious Area	
	90.000	Pervious tength Depuious slope"	
	2.000	Impenyious Apea"	
	90,040	Impervious length"	
	2 000	Impervious slope"	
	a 250	Pervious Manning 'n'"	
	75,000	Pervious SCS Curve No	"
	A 266	Pervious Runoff coeff	cient"
	0.100	Pervious Ja/S coeffic	ent"
	8.467	Pervious Initial abst	action"
	0.015	Impervious Manning 'n	
"	98.000	Impervious SCS Curve	lo."

			416	5130_PrePOST	Г_5		
"	0.881	Impervious	Runoff co	pefficient"			
"	0.100	Impervious	Ia/S coet	fficient"			
"	0.518	Impervious	Initial a	abstraction'	•		
"		0.824	0.00	0.000	0.000 (c.m/sec"	
"	C	atchment 100		Pervious	Impervious	Total Area	"
"	S	urface Area		4.560	3.040	7.600	hectare"
"	Т	ime of concer	ntration	37.755	3.958	14.481	minutes"
"	Т	ime to Centro	oid	147.066	93.045	109.865	minutes"
"	R	ainfall depth	า	48.647	48.647	48.647	mm"
"	R	ainfall volum	ne	2218.30	1478.87	3697.17	c.m"
"	R	ainfall losse	25	35.722	5.767	23.740	mm"
"	R	unoff depth		12.925	42.880	24.907	mm"
"	R	unoff volume		589.36	1303.56	1892.92	c.m"
"	R	unoff coeffic	cient	0.266	0.881	0.512	"
"	M	laximum flow		0.120	0.802	0.824	c.m/sec"
"	40 H	YDROGRAPH Add	d Runoff '				
"	4	Add Runoff	"				
"		0.824	0.824	4 0.000	0.000"		
"	33 C	ATCHMENT 101	•				
"	1	Triangular	SCS"				
"	1	Equal lengt	:h"				
"	1	SCS method"	ı				
"	101	Catchment 1	L01"				
"	30.000	% Imperviou	ıs"				
"	12.600	Total Area"	ı				
"	90.000	Flow length	า"				
"	2.000	Overland SI	Lope"				
"	8.820	Pervious Ar	rea"				
"	90.000	Pervious le	ength"				
"	2.000	Pervious s]	Lope"				
"	3.780	Impervious	Area"				
"	90.000	Impervious	length"				
	2.000	Impervious	slope"				
	0.250	Pervious Ma	anning 'n				
	75.000	Pervious SC	IS Curve I	No."			
	0.266	Pervious Ru	inott coet	fficient"			
	0.100	Pervious Ia	a/S_coett:	icient"			
	8.46/	Pervious Ir		straction"			
	0.015	Impervious	Manning	'n'''			
	98.000	Impervious	SCS Curve	e NO."			
	0.881	Impervious	RUNOTT CO	Setticient"			
	0.100	Impervious	Ia/S coet	rficient shatasation'			
	0.518	1 040			0 000	~ m/coc"	
	~	1040 atchmont 101	0.024			Total Anon	п
	C C	acchinent 101			3 780	12 600	hactona"
	с т	ime of concer	tration	37 755	3 958	17 913	minutoc"
"	י T	ime to Centro	bid	147.066	93.045	115.351	minutes"
				· · · ·			

	41	16130_PrePOS ⁻	T_5		
"	Rainfall depth	48.647	48.647	48.647	mm"
"	Rainfall volume	4290.67	1838.86	6129.53	c.m"
"	Rainfall losses	35.722	5.767	26.736	mm"
"	Runoff depth	12.925	42.880	21.911	mm"
"	Runoff volume	1139.94	1620.88	2760.82	c.m"
"	Runoff coefficient	0.266	0.881	0.450	"
"	Maximum flow	0.231	0.997	1.040	c.m/sec"
"	40 HYDROGRAPH Add Runoff	п			•
"	4 Add Runoff "				
"	1.040 1.86	63 0.000	0.000"		
"	33 CATCHMENT 102"				
	1 Triangular SCS"				
	1 Equal length"				
	1 SCS method"				
	102 Catchment 102"				
	75.000 % Impervious"				
	8.400 Total Area"				
	90.000 Flow length"				
	2.000 Overland Slope"				
	2.100 Pervious Area"				
	90.000 Pervious length"				
	2.000 Pervious slope"				
	6.300 Impervious Area"				
	90.000 Impervious length"				
	2.000 Impervious slope"				
	0.250 Pervious Manning 'r	n'"			
	75.000 Pervious SCS Curve	No."			
	0.266 Pervious Runoff co	efficient"			
	0.100 Pervious Ia/S coef	ficient"			
	8.467 Pervious Initial at	ostraction"			
	0.015 Impervious Manning	'n'"			
	98.000 Impervious SCS Curv	ve No."			
	0.881 Impervious Runoff (coefficient"			
	0.100 Impervious Ia/S coe	efficient"			
"	0.518 Impervious Initial	abstraction'	u –		
"	1.672 1.86	53 0.000	0.000	c.m/sec"	
"	Catchment 102	Pervious	Impervious	Total Area	"
"	Surface Area	2.100	6.300	8.400	hectare"
"	Time of concentration	37.755	3.958	7.044	minutes"
	Time to Centroid	147.066	93.045	97.977	minutes"
	Rainfall depth	48.647	48.647	48.647	mm"
	Rainfall volume	1021.59	3064.76	4086.35	c.m"
	Rainfall losses	35.722	5.767	13.256	mm"
"	Runoff depth	12.925	42.880	35.391	mm"
	Runoff volume	271.42	2701.46	2972.88	c.m"
"	Runoff coefficient	0.266	0.881	0.728	н. П
	Maximum flow	0.055	1.662	1.672	c.m/sec"
	40 HYDROGRAPH Add Runoff				

			416	130_PrePOST	Г_5		
"	4	Add Runoff "					
"		1.672	3.536	0.000	0.000"		
"	33 CA	TCHMENT 200"					
"	1	Triangular S	CS"				
"	1	Equal length	п				
"	1	SCS method"					
"	200	Catchment 20	0"				
"	0.000	% Impervious	п				
"	10.000	Total Area"					
"	90.000	Flow length"					
"	2.000	Overland Slo	pe"				
"	10.000	Pervious Are	a"				
"	90.000	Pervious len	gth"				
"	2.000	Pervious slo	pe"				
"	0.000	Impervious A	rea"				
"	90.000	Impervious 1	ength"				
"	2.000	Impervious s	lope"				
"	0.250	Pervious Man	ning 'n'				
"	75.000	Pervious SCS	Curve N	o."			
"	0.266	Pervious Run	off coef	ficient"			
"	0.100	Pervious Ia/	S coeffi	cient"			
"	8.467	Pervious Ini	tial abs	traction"			
"	0.015	Impervious M	anning '	n'"			
"	98.000	Impervious S	CS Curve	No."			
"	0.000	Impervious R	unoff co	efficient"			
"	0.100	Impervious I	a/S coef	ficient"			
"	0.518	Impervious I	nitial a	bstraction'			
"		0.262	3.536	0.000	0.000 (.m/sec"	
"	Ca	tchment 200		Pervious	Impervious	Total Area	п
"	Su	irface Area		10.000	0.000	10.000	hectare"
"	Ti	me of concent	ration	37.755	3.958	37.755	minutes"
"	Ti	me to Centroi	d	147.066	93.045	147.066	minutes"
"	Ra	infall depth		48.647	48.647	48.647	mm"
"	Ra	infall volume		4864.70	0.00	4864.70	c.m"
"	Ra	infall losses		35.722	5.767	35.722	mm"
"	Ru	noff depth		12.925	42.880	12.925	mm"
"	Ru	noff volume		1292.45	0.00	1292.46	c.m"
"	Ru	noff coeffici	ent	0.266	0.000	0.266	"
"	Ма	ximum flow		0.262	0.000	0.262	c.m/sec"
"	40 HY	DROGRAPH Add	Runoff "				
"	4	Add Runoff "					
"		0.262	3.584	0.000	0.000"		

		4161	30_PrePOST_100
"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 07, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	W:\Kitchener\416-2016\"
"		416130 Whistle Bare	Road Campground\5 Work in Progress\Design
Ca	alcs\MIDUSS"		
"		Output filename:	416130_PrePOST_100.out"
"		Licensee name:	gmbp"
"		Company	gmbp"
"		Date & Time last use	1: 11/7/2019 at 11:05:16 AM"
"	31	TIME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32	STORM Chicago storm"	
"	1	Chicago storm"	
"	3015.100	Coefficient A"	
"	21.000	Constant B"	
"	0.870	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier	
"	1	Maximum intensity	177.123 mm/hr"
"	-	Total depth	89.669 mm"
"	6	100hyd Hydrograph	extension used in this file"
"	33 (CATCHMENT 100"	
"	1	Triangular SCS"	
	1	Equal length"	
	1	SCS method"	
	100	Catchment 100"	
	40.000	% Impervious"	
	7.600	Total Area"	
	90.000	Flow length"	
	2.000	Overland Slope"	
	4.560	Pervious Area"	
	90.000	Pervious length"	
	2.000	Pervious slope"	
	3.040	Impervious Area"	
	90.000	Impervious length"	
	2.000	Impervious slope"	
	0.250	Pervious Manning 'n'	
	/5.000	Pervious SCS Curve N). Si si sut "
	0.443	Pervious Runott coet	
	0.100	Pervious Ia/S coetti	lent
	8.46/	rervious initial abs	
	0.015	Impervious Manning	
-	98.000	impervious SCS Curve	NO.

			4163	130_PrePOST_	_100		
"	0.922	Impervious	Runoff co	pefficient"			
"	0.100	Impervious	Ia/S coet	fficient"			
"	0.518	Impervious	Initial a	abstraction'	•		
"		1.342	0.00	0.000	0.000 (c.m/sec"	
"	C	atchment 100		Pervious	Impervious	Total Area	"
"	S	urface Area		4.560	3.040	7.600	hectare"
"	Т	ime of concer	ntration	25.591	3.434	12.712	minutes"
"	Т	ime to Centro	oid	128.770	91.156	106.907	minutes"
"	R	ainfall depth	า	89.669	89.669	89.669	mm''
"	R	ainfall volum	ne	4088.91	2725.94	6814.84	c.m"
"	R	ainfall losse	25	49.970	7.015	32.788	mm"
"	R	unoff depth		39.699	82.654	56.881	mm''
"	R	unoff volume		1810.29	2512.69	4322.98	c.m"
"	R	unoff coeffic	cient	0.443	0.922	0.634	"
"	Μ	aximum flow		0.490	1.201	1.342	c.m/sec"
"	40 H	YDROGRAPH Add	d Runoff '	u –			
"	4	Add Runoff	"				
"		1.342	1.342	2 0.000	0.000"		
"	33 C	ATCHMENT 101"	•				
"	1	Triangular	SCS"				
"	1	Equal lengt	:h"				
"	1	SCS method"	ı				
"	101	Catchment 1	L01"				
"	30.000	% Imperviou	ıs"				
"	12.600	Total Area"	ı				
"	90.000	Flow length	า"				
"	2.000	Overland Sl	Lope"				
"	8.820	Pervious Ar	rea"				
	90.000	Pervious le	ength"				
	2.000	Pervious sl	Lope"				
"	3.780	Impervious	Area"				
"	90.000	Impervious	length"				
	2.000	Impervious	slope"				
	0.250	Pervious Ma	anning 'n				
	75.000	Pervious SC	IS Curve I	No."			
	0.443	Pervious Ru	inott coet	fficient"			
	0.100	Pervious Ia	a/S_coett:	icient"			
	8.46/	Pervious Ir		straction"			
	0.015	Impervious	Manning	'n'''			
	98.000	Impervious	SUS CURVE				
	0.922	Impervious	KUNOTT CO	Setticient"			
	0.100	Impervious	19/2 CO61	rricient"			
	0.518	Impervious			0 000	- m/coc"	
	~	1.//4	1.344				п
	L c	acciment 101		e el ATORS		10 600	hoctano"
	С т	imp of concor	tration	0.020 25 501	3 121	15 1/2	minutoc"
	I T	ime to Contro	id id	23.391 128 770	91 156	111 022	minutes
	1	THE COLENCE	10	120.//0	~		milliores

	41	.6130_PrePOST_	_100		
"	Rainfall depth	89.669	89.669	89.669	mm"
"	Rainfall volume	0.7909	0.3389	1.1298	ha-m"
"	Rainfall losses	49.970	7.015	37.083	mm''
"	Runoff depth	39.699	82.654	52.586	mm''
"	Runoff volume	3501.49	3124.33	6625.82	c.m"
"	Runoff coefficient	0.443	0.922	0.586	"
"	Maximum flow	0.948	1.494	1.774	c.m/sec"
"	40 HYDROGRAPH Add Runoff	: "			
"	4 Add Runoff "				
"	1.774 3.1	.16 0.000	0.000"		
"	33 CATCHMENT 102"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	1 SCS method"				
"	102 Catchment 102"				
"	75.000 % Impervious"				
"	8.400 Total Area"				
"	90.000 Flow length"				
"	2.000 Overland Slope"				
"	2.100 Pervious Area"				
"	90.000 Pervious length"				
"	2.000 Pervious slope"				
"	6.300 Impervious Area"				
"	90.000 Impervious length"				
	2.000 Impervious slope"				
	0.250 Pervious Manning '	n'"			
"	75.000 Pervious SCS Curve	No."			
	0.443 Pervious Runoff co	efficient"			
	0.100 Pervious Ia/S coef	ficient"			
	8.467 Pervious Initial a	bstraction"			
	0.015 Impervious Manning	; 'n'"			
	98.000 Impervious SCS Cur	ve No."			
	0.922 Impervious Runott	coefficient"			
	0.100 Impervious Ia/S co	efficient"			
	0.518 Impervious Initial		0.000		
	2.538 3.1	.16 0.000	0.000 0	.m/sec [~]	
	Catchment 102	Pervious	Impervious	Iotal Area	h . "
	Surface Area	2.100	0.300	8.400	nectare
	Time to Contentration	120.291	5.454	0.491	minutes
	Deinfall donth	128.770	91.150	90.347	minutes
	Raintall depth	89.009 1992 OF	89.669	89.009	
	Rainfall lossos	1003.05	2049.12 7 015	17752.20	C.III
	RAINTAII IUSSES Bunoff donth	43.3/0	07 6E1	1/./04 71 015	 mm"
		22.022	02.004 5007 01	11.3T2	
	Runoff coofficient	60.CCO	0 077	0040.90	U.III 11
	Maximum flou	0.445 0.226	2 189	2 538	
		: "	2.403	2.2	C. III/ SEC

			416130	_PrePOST_	_100									
"	4	Add Runoff "												
"		2.538	5.654	0.000	0.000	п								
"	33 C	ATCHMENT 200"												
"	1	Triangular SCS"												
"	1	Equal length"												
"	1	SCS method"												
"	200	Catchment 200"												
"	0.000	% Impervious"												
"	10.000	Total Area"												
"	90.000	Flow length"												
"	2.000	Overland Slope"												
"	10.000	Pervious Area"												
"	90.000	Pervious length												
"	2.000	Pervious slope"												
"	0.000	Impervious Area												
	90,000	Impervious leng	th"											
	2,000	Impervious slop	en ۳											
	0.250	Pervious Mannin	σ 'n'"											
	75,000	Pervious SCS Cu	rve No.											
	0 443	Pervious Runoff	coeffi	cient"										
	0.445	Pervious Ta/S co	neffici	ent"										
	8,467	Pervious Initia	l abstr	ention"										
	0,015	Impervious Mann	ing 'n'	"										
	98,000	Impervious SCS (Curve N	lo. "										
	90.000	Impervious Runo	ff coef	ficient"										
	0.100	Impervious Ta/S	coeffi	cient"										
	0.518	Impervious Init	ial abs	traction'										
	01920	1 075 5 651 0 000 0 000 c m/coc"												
	C	atchment 200	Pe	rvious	Imperviou	s Total	∆rea	н						
	5	urface Area	10	000	0.000	10.000	ii cu	hectare"						
	T	ime of concentrat	ion 25	591	3,434	25,591		minutes"						
	т	ime to Centroid	12	8 770	91 156	128 77	a	minutes"						
	R	ainfall denth	80	669	89 669	89 669	0	mm"						
	R	ainfall volume	80	66 89	0 01	8966 9	 с m"							
	R	ainfall losses	<u>лс</u>	970	7 015	19 970	0	mm"						
	R	unoff denth	20	699	82 654	30 600	mm"							
	R	unoff volume	20	69 91	0 01	3969 9	л	 						
	P	unoff coefficient	0	113	0.01	0 113	+							
	M	avinum flow	1	44J 075	0.000	1 075		c m/sec"						
	10 H	VDROGRADH Add Rum	.ب مربط ۲۰	075	0.000	1.075		C.m/ 38C						
	40 1	Add Pupoff "	511											
	4		5 0 9 7	0 000	0 000	п								
	30 0	TART/RE_CTART TOT	2.907 NIS 200	0.000	0.000									
	د د	Runoff Totalc or	~LJ 200 n FYTT"											
	с т	nunui iutais Ul			2	8 600	hoc	tano"						
	Г Т	otal Impenyious a	د 1	12 120 hastana"										
	Г Т	otal % impervious d	ca		1 2	3 000" 2.170	nec							
	19 F	XTT"			C	טפרינ								
		0 + 1												

Preliminary Annual Water Balance - Existing and Post-Development Conditions 1898 Whislte Bare Road

	Existing Conditions				st	Post-Development Conditions								is the second	Totals			
	Catchment 10 Catchment 20 Existing camp sites, residences, gravel drive aisles, landscaped areas Existing Natural Features		tio	Catchment 100		Catchment 101		Catchment 102		Catchment 200		nen						
			Existing Natural Features		Existing Condi Summary	Proposed gravel drive aisles, camp sites, playground, cabins, and landscaped areas		Proposed additional camp site areas, including gravel roadways, landscaped areas		Proposed gravel drive aisles, site storage area, wastewater treatment facility, overnight area, existing residences, Rec Hall, and landscaped areas		Existing Natural Features		Post-Developn Conditions Sum		Existing	Post- Development	
	Impervious	Pervious	Impervious	Pervious		Impervious	Pervious	Impervious	Pervious	Impervious	Pervious	Impervious	Pervious					% Diff.
Total Area (ha)	28.600		10.000	38.600	7.600		12.600		8.400		10.000		38.600	Area (ha)	38.60	38.60		
Imperviousness	15%		0%		20%	4	0%	30)%	75	5%	09	6	40%				
Area (ha)	4.2900	24.310	0.0000	10.000		3.0400	4.560	3.7800	8.820	6.3000	2.100	0.0000	10.000					
Area (m ²)	42,900	243,100	0	100,000	386,000	30,400	45,600	37,800	88,200	63,000	21,000	0	100,000	386,000				
Annual Precipitation (Waterloo Wellington) (mm)	916		916			916		916		916		916						
Precipitation (m ³)	39.296	222.680	0	91.600		27.846	41.770	34.625	80.791	57.708	19.236	0	91.600					
Total Precipitation (m ³ /year)	261,976		91,600		353,576	69,616		115	115,416		76,944		91,600 353,576		Precipitation (m ³ /year)	353,576	353,576	0%
Annual Evapotranspiration (mm)	125	530	125	530		125	530	125	530	125	530	125	530					
Evapotranspiration (m ³)	5 363	128 843	0	53 000		3 800	24 168	4 725	46 746	7 875	11 130	0	53 000					
Total Evapotranspiration (m ³ /vear)	134,206		53,000		187.206	27,968		51,471		19,005		53.0	00	151.444	Evapotranspiration (m ³ /vear)	187,206	151.444	-19%
					- ,			- ,		- ,				- /				
Available for Recharge & Runoff (mm)	791	386	791	386		791	386	791	386	791	386	791	370					
Recharge & Runoff (m ³)	33,934	93,837	0	38,600		24,046	17,602	29,900	34,045	49,833	8,106	0	37,000					
Total Recharge & Runoff (m ³ /year)	127	7,771	38,600		166,371	41,648		63,945		57,939		37,0	00	200,532	Recharge & Runoff (m ³ /year)	166,371	200,532	21%
Annual Natural Recharge (mm) (Sand):	0	347	0	347		0	347	0	347	0	347	0	347					
Pervious @ 347 mm/year		84,356		34,700	119,056		15,823		30,605		7,287		34,700	88,416				
Impervious @ 0 mm/vear	0		0		0	0		0		0		0		0				
Total Annual Natural Recharge (m ³ /year)	84,356		34,700		119,056	15,823		30,605		7,287		34,700		88,416	Natural Recharge (m ³ /year)	119,056	88,416	-26%
Annual Runoff (mm) (Sand):	791	39	791	39		791	39	791	39	791	39	791	39					
Pervious @ 39 mm/year		9,481		3,900	13,381		1,778		3,440		819		3,900	9,937				
Impervious @ 791 mm/year	33,934		0		33,934	24,046		29,900		49,833		0		103,779				
Total Annual Runoff (m ³ /year)	43,415		3,900		47,315	25,825		33,340		50,652		3,900		113,716	Annual Runoff (m ³ /year)	47,315	113,716	140%
Additional Recharge:																		
Catchment Percent Infiltrated ¹						95%												
Infiltrated m ³ /year			0	0		0	0	28,405	3,268	0	0	0	0	31,673	Additional Recharge (m ³ /year)	0	31,673	
Total Annual Recharge (m ³ /year)	84,356		34,	34,700		15,823		62,	62,278		7,287		34,700		Annual Recharge (m ³ /year)	119,056	120,088	1%
Total Annual Runoff (m ³ /year)	43	,415	3,9	900	47,315	25	,825	1,6	67	50,	652	3,9	00	82,044	Total Annual Runoff (m ³ /year)	47,315	82,044	73%